These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24146015)

  • 1. Acceleration and turbulence in Rayleigh-Taylor mixing.
    Sreenivasan KR; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?
    Anisimov SI; Drake RP; Gauthier S; Meshkov EE; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130266. PubMed ID: 24146014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime.
    Poujade O
    Phys Rev Lett; 2006 Nov; 97(18):185002. PubMed ID: 17155550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.
    Poujade O; Peybernes M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of Rayleigh-Taylor turbulence by time-periodic acceleration.
    Boffetta G; Magnani M; Musacchio S
    Phys Rev E; 2019 Mar; 99(3-1):033110. PubMed ID: 30999487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onset of turbulence in accelerated high-Reynolds-number flow.
    Zhou Y; Robey HF; Buckingham AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a turbulent-mix model for variable-density and compressible flows.
    Banerjee A; Gore RA; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046309. PubMed ID: 21230392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence.
    Qiu X; Liu YL; Zhou Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043012. PubMed ID: 25375598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional effects in Rayleigh-Taylor mixing.
    Boffetta G; Musacchio S
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210084. PubMed ID: 35094565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Rayleigh-Taylor mixing using single-fluid models.
    Kokkinakis IW; Drikakis D; Youngs DL
    Phys Rev E; 2019 Jan; 99(1-1):013104. PubMed ID: 30780362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of polymer additives on Rayleigh-Taylor turbulence.
    Boffetta G; Mazzino A; Musacchio S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056318. PubMed ID: 21728658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing.
    Morgan BE; Schilling O; Hartland TA
    Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct numerical simulation of turbulent mixing.
    Statsenko VP; Yanilkin YV; Zhmaylo VA
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120216. PubMed ID: 24146009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer heat transport enhancement in thermal convection: the case of Rayleigh-Taylor turbulence.
    Boffetta G; Mazzino A; Musacchio S; Vozella L
    Phys Rev Lett; 2010 May; 104(18):184501. PubMed ID: 20482177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts.
    Cheng B; Glimm J; Sharp DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing.
    Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1809-28. PubMed ID: 20211884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.