These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 24146015)
41. Small Atwood number Rayleigh-Taylor experiments. Andrews MJ; Dalziel SB Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1663-79. PubMed ID: 20211879 [TBL] [Abstract][Full Text] [Related]
42. Taylor particle dispersion during transition to fully developed two-dimensional turbulence. Xia H; Francois N; Punzmann H; Shats M Phys Rev Lett; 2014 Mar; 112(10):104501. PubMed ID: 24679297 [TBL] [Abstract][Full Text] [Related]
43. Experiments of the Richtmyer-Meshkov instability. Prestridge K; Orlicz G; Balasubramanian S; Balakumar BJ Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120165. PubMed ID: 24146004 [TBL] [Abstract][Full Text] [Related]
44. Key issues review: numerical studies of turbulence in stars. David Arnett W; Meakin C Rep Prog Phys; 2016 Oct; 79(10):102901. PubMed ID: 27652516 [TBL] [Abstract][Full Text] [Related]
45. Anomalous scaling of three-dimensional Rayleigh-Taylor turbulence. Matsumoto T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):055301. PubMed ID: 19518513 [TBL] [Abstract][Full Text] [Related]
46. Numerical simulations of Rayleigh-Taylor front evolution in turbulent stratified fluids. Biferale L; Mantovani F; Pozzati F; Sbragaglia M; Scagliarini A; Schifano F; Toschi F; Tripiccione R Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2448-55. PubMed ID: 21576159 [TBL] [Abstract][Full Text] [Related]
47. Turbulent mixing with physical mass diffusion. Liu X; George E; Bo W; Glimm J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056301. PubMed ID: 16803031 [TBL] [Abstract][Full Text] [Related]
48. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales. Abarzhi SI; Gauthier S; Sreenivasan KR Philos Trans A Math Phys Eng Sci; 2013 Jan; 371(1982):20120435. PubMed ID: 23185062 [TBL] [Abstract][Full Text] [Related]
49. Evidence for internal structures of spiral turbulence. Dong S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):067301. PubMed ID: 20365305 [TBL] [Abstract][Full Text] [Related]
52. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
53. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
54. Numerical investigation of initial condition effects on Rayleigh-Taylor instability with acceleration reversals. Aslangil D; Banerjee A; Lawrie AG Phys Rev E; 2016 Nov; 94(5-1):053114. PubMed ID: 27967066 [TBL] [Abstract][Full Text] [Related]
55. Second-order closure in stratified turbulence: simulations and modeling of bulk and entrainment regions. Biferale L; Mantovani F; Sbragaglia M; Scagliarini A; Toschi F; Tripiccione R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016305. PubMed ID: 21867302 [TBL] [Abstract][Full Text] [Related]
56. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834 [TBL] [Abstract][Full Text] [Related]
57. Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of three Rayleigh-Taylor mixing configurations with gravity reversal. Morgan BE Phys Rev E; 2022 Aug; 106(2-2):025101. PubMed ID: 36109949 [TBL] [Abstract][Full Text] [Related]
59. Lagrangian views on turbulent mixing of passive scalars. Sreenivasan KR; Schumacher J Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1561-77. PubMed ID: 20211874 [TBL] [Abstract][Full Text] [Related]
60. Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model. Ripesi P; Biferale L; Schifano SF; Tripiccione R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043022. PubMed ID: 24827347 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]