These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 24146016)
1. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II. Abarzhi SI; Gauthier S; Sreenivasan KR Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016 [TBL] [Abstract][Full Text] [Related]
3. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales I. Abarzhi SI; Gauthier S; Sreenivasan KR Philos Trans A Math Phys Eng Sci; 2013 Jan; 371(1982):20120436. PubMed ID: 23185063 [TBL] [Abstract][Full Text] [Related]
4. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales. Abarzhi SI; Gauthier S; Sreenivasan KR Philos Trans A Math Phys Eng Sci; 2013 Jan; 371(1982):20120435. PubMed ID: 23185062 [TBL] [Abstract][Full Text] [Related]
5. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438 [TBL] [Abstract][Full Text] [Related]
6. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Zhou Y; Zimmerman GB; Burke EW Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056303. PubMed ID: 12059699 [TBL] [Abstract][Full Text] [Related]
7. Supernovae and the Arrow of Time. Abarzhi SI; Hill DL; Naveh A; Williams KC; Wright CE Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741549 [TBL] [Abstract][Full Text] [Related]
8. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794 [TBL] [Abstract][Full Text] [Related]
9. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts. Cheng B; Glimm J; Sharp DH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258 [TBL] [Abstract][Full Text] [Related]
10. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034 [TBL] [Abstract][Full Text] [Related]
11. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling. Schilling O; Mueschke NJ Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290 [TBL] [Abstract][Full Text] [Related]
12. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812 [TBL] [Abstract][Full Text] [Related]
13. Energy transfer in the Richtmyer-Meshkov instability. Thornber B; Zhou Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056302. PubMed ID: 23214871 [TBL] [Abstract][Full Text] [Related]
14. Onset of turbulence in accelerated high-Reynolds-number flow. Zhou Y; Robey HF; Buckingham AC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270 [TBL] [Abstract][Full Text] [Related]
15. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability. Matsuoka C; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451 [TBL] [Abstract][Full Text] [Related]
16. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations. Tritschler VK; Zubel M; Hickel S; Adams NA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181 [TBL] [Abstract][Full Text] [Related]
17. Laser astrophysics experiment on the amplification of magnetic fields by shock-induced interfacial instabilities. Sano T; Tamatani S; Matsuo K; Law KFF; Morita T; Egashira S; Ota M; Kumar R; Shimogawara H; Hara Y; Lee S; Sakata S; Rigon G; Michel T; Mabey P; Albertazzi B; Koenig M; Casner A; Shigemori K; Fujioka S; Murakami M; Sakawa Y Phys Rev E; 2021 Sep; 104(3-2):035206. PubMed ID: 34654211 [TBL] [Abstract][Full Text] [Related]
18. Self-similar Rayleigh-Taylor mixing with accelerations varying in time and space. Abarzhi SI; Sreenivasan KR Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2118589119. PubMed ID: 36375067 [TBL] [Abstract][Full Text] [Related]
19. Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field. Sun YB; Wang C Phys Rev E; 2020 May; 101(5-1):053110. PubMed ID: 32575244 [TBL] [Abstract][Full Text] [Related]
20. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Morgan BE; Schilling O; Hartland TA Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]