BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24146151)

  • 1. An environmental, economic, and social assessment of improving cattle finishing weight or average daily gain within U.S. beef production.
    White RR; Capper JL
    J Anim Sci; 2013 Dec; 91(12):5801-12. PubMed ID: 24146151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The environmental and economic impact of removing growth-enhancing technologies from U.S. beef production.
    Capper JL; Hayes DJ
    J Anim Sci; 2012 Oct; 90(10):3527-37. PubMed ID: 22665660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cow-calf reproductive, genetic, and nutritional management to improve the sustainability of whole beef production systems.
    White RR; Brady M; Capper JL; McNamara JP; Johnson KA
    J Anim Sci; 2015 Jun; 93(6):3197-211. PubMed ID: 26115306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems.
    Rotz CA; Isenberg BJ; Stackhouse-Lawson KR; Pollak EJ
    J Anim Sci; 2013 Nov; 91(11):5427-37. PubMed ID: 24146148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon footprint and ammonia emissions of California beef production systems.
    Stackhouse-Lawson KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4641-55. PubMed ID: 22952361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems.
    Nguyen TT; Doreau M; Eugène M; Corson MS; Garcia-Launay F; Chesneau G; van der Werf HM
    Animal; 2013 May; 7(5):860-9. PubMed ID: 23190866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems.
    Stackhouse KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4656-65. PubMed ID: 22952364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The environmental impact of beef production in the United States: 1977 compared with 2007.
    Capper JL
    J Anim Sci; 2011 Dec; 89(12):4249-61. PubMed ID: 21803973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Southern Section Interdisciplinary Beef Cattle Symposium: Carryover effects of stocker cattle systems on feedlot performance and carcass characteristics.
    Reuter RR; Beck PA
    J Anim Sci; 2013 Jan; 91(1):508-15. PubMed ID: 23048147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of including growth, carcass and feed efficiency traits in the breeding goal for combined milk and beef production systems.
    Hietala P; Juga J
    Animal; 2017 Apr; 11(4):564-573. PubMed ID: 27608523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effects of steroid implant use on the environmental and economic sustainability of Brazilian beef production.
    Capper JL; De Carvalho TB; Hancock AS; Sá Filho OG; Odeyemi I; Bartram DJ
    Transl Anim Sci; 2021 Oct; 5(4):txab144. PubMed ID: 34632312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of direct and indirect selection criteria for efficiency of gain on profitability of Japanese Black cattle selection strategies.
    Kahi AK; Hirooka H
    J Anim Sci; 2007 Oct; 85(10):2401-12. PubMed ID: 17565064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship among performance, carcass, and feed efficiency characteristics, and their ability to predict economic value in the feedlot.
    Retallick KM; Faulkner DB; Rodriguez-Zas SL; Nkrumah JD; Shike DW
    J Anim Sci; 2013 Dec; 91(12):5954-61. PubMed ID: 24265328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2011 and 2012 Early Careers Achievement Awards: improving the production, environmental, and economic efficiency of the stocker cattle industry in the southeastern United States.
    Beck PA; Anders M; Watkins B; Gunter SA; Hubbell D; Gadberry MS
    J Anim Sci; 2013 Jun; 91(6):2456-66. PubMed ID: 23243161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas.
    Rotz CA; Asem-Hiablie S; Dillon J; Bonifacio H
    J Anim Sci; 2015 May; 93(5):2509-19. PubMed ID: 26020346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017.
    Capper JL; Cady RA
    J Anim Sci; 2020 Jan; 98(1):. PubMed ID: 31622980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of alternative beef production systems based on forage finishing or grain-forage diets with or without growth promotants: 1. Feedlot performance, carcass quality, and production costs.
    Berthiaume R; Mandell I; Faucitano L; Lafrenière C
    J Anim Sci; 2006 Aug; 84(8):2168-77. PubMed ID: 16864879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.
    Cernicchiaro N; Renter DG; Xiang S; White BJ; Bello NM
    J Anim Sci; 2013 Jun; 91(6):2910-9. PubMed ID: 23482583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of modern technologies commonly used in beef cattle production: conventional beef production versus nonconventional production using meta-analysis.
    Wileman BW; Thomson DU; Reinhardt CD; Renter DG
    J Anim Sci; 2009 Oct; 87(10):3418-26. PubMed ID: 19617517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Southern Section Interdisciplinary Beef Cattle Symposium: Forage and co-product systems for stockers in the South: have fundamental shifts in markets changed the optimal system?
    Rankins DL; Prevatt JW
    J Anim Sci; 2013 Jan; 91(1):503-7. PubMed ID: 23148245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.