BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24146291)

  • 21. Lactation alters fluid flow and solute transport in maternal skeleton: A multiscale modeling study on the effects of microstructural changes and loading frequency.
    Lai X; Chung R; Li Y; Liu XS; Wang L
    Bone; 2021 Oct; 151():116033. PubMed ID: 34102350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis.
    Yu W; Wu X; Cen H; Guo Y; Li C; Wang Y; Qin Y; Chen W
    Biomed Eng Online; 2019 Dec; 18(1):122. PubMed ID: 31870380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity.
    Mak AF; Huang DT; Zhang JD; Tong P
    J Biomech; 1997 Jan; 30(1):11-8. PubMed ID: 8970919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of estrogen deficiency on cortical bone microporosity and mineralization.
    Sharma D; Larriera AI; Palacio-Mancheno PE; Gatti V; Fritton JC; Bromage TG; Cardoso L; Doty SB; Fritton SP
    Bone; 2018 May; 110():1-10. PubMed ID: 29357314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical analysis of the flow field in the lacunar-canalicular system under different magnitudes of gravity.
    Zhao S; Liu H; Li Y; Song Y; Wang W; Zhang C
    Med Biol Eng Comput; 2020 Mar; 58(3):509-518. PubMed ID: 31900816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT.
    Hesse B; Varga P; Langer M; Pacureanu A; Schrof S; Männicke N; Suhonen H; Maurer P; Cloetens P; Peyrin F; Raum K
    J Bone Miner Res; 2015 Feb; 30(2):346-56. PubMed ID: 25130720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow.
    Price C; Zhou X; Li W; Wang L
    J Bone Miner Res; 2011 Feb; 26(2):277-85. PubMed ID: 20715178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.
    Wang L; Fritton SP; Cowin SC; Weinbaum S
    J Biomech; 1999 Jul; 32(7):663-72. PubMed ID: 10400353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling tracer transport in an osteon under cyclic loading.
    Wang L; Cowin SC; Weinbaum S; Fritton SP
    Ann Biomed Eng; 2000; 28(10):1200-9. PubMed ID: 11144981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure.
    Scheiner S; Pivonka P; Hellmich C
    Biomech Model Mechanobiol; 2016 Feb; 15(1):9-28. PubMed ID: 26220453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavior of fluid in stressed bone and cellular stimulation.
    Johnson MW
    Calcif Tissue Int; 1984; 36 Suppl 1():S72-6. PubMed ID: 6430527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.
    Cowin SC; Cardoso L
    J Biomech; 2015 Mar; 48(5):842-54. PubMed ID: 25666410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of bone permeability using accurate microstructural measurements.
    Beno T; Yoon YJ; Cowin SC; Fritton SP
    J Biomech; 2006; 39(13):2378-87. PubMed ID: 16176815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone.
    Yang F; Yu W; Huo X; Li H; Qi Q; Yang X; Shi N; Wu X; Chen W
    Biomed Res Int; 2022; 2022():3935803. PubMed ID: 35677099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements.
    Qin YX; Lin W; Rubin C
    Ann Biomed Eng; 2002 May; 30(5):693-702. PubMed ID: 12108843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomical variations in cortical bone surface permeability: Tibia versus femur.
    Kumar R; Tiwari AK; Tripathi D; Main RP; Kumar N; Sihota P; Ambwani S; Sharma NN
    J Mech Behav Biomed Mater; 2021 Jan; 113():104122. PubMed ID: 33125957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multimodal 3D imaging approach of pore networks in the human femur to assess age-associated vascular expansion and Lacuno-Canalicular reduction.
    Andronowski JM; Cole ME; Davis RA; Tubo GR; Taylor JT; Cooper DML
    Anat Rec (Hoboken); 2023 Mar; 306(3):475-493. PubMed ID: 36153809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional in situ assessment of human articular cartilage using MRI: a whole-knee joint loading device.
    Nebelung S; Post M; Raith S; Fischer H; Knobe M; Braun B; Prescher A; Tingart M; Thüring J; Bruners P; Jahr H; Kuhl C; Truhn D
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1971-1986. PubMed ID: 28685238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluid flow in bone in vitro.
    Johnson MW; Chakkalakal DA; Harper RA; Katz JL; Rouhana SW
    J Biomech; 1982; 15(11):881-5. PubMed ID: 7161290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.