These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24146335)

  • 1. Waveform variance and latency jitter of the visual evoked potential in childhood.
    Kelly JP; Darvas F; Weiss AH
    Doc Ophthalmol; 2014 Feb; 128(1):1-12. PubMed ID: 24146335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEP analysis methods in children with optic nerve hypoplasia: relationship to visual acuity and optic disc diameter.
    Kelly JP; Phillips JO; Weiss AH
    Doc Ophthalmol; 2016 Dec; 133(3):159-169. PubMed ID: 27882486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occlusion therapy improves phase-alignment of the cortical response in amblyopia.
    Kelly JP; Tarczy-Hornoch K; Herlihy E; Weiss AH
    Vision Res; 2015 Sep; 114():142-50. PubMed ID: 25529643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship of nystagmus waveform on the VEP response in infantile nystagmus syndrome: a small case series.
    Kelly JP; Phillips JO; Weiss AH
    Doc Ophthalmol; 2017 Feb; 134(1):37-44. PubMed ID: 28054161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reduced visual pathway response in infantile nystagmus syndrome.
    Kelly JP; Tarczy-Hornoch K; Phillips JO; Weiss AH
    J AAPOS; 2021 Feb; 25(1):9.e1-9.e6. PubMed ID: 33601041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation.
    Kremláček J; Hulan M; Kuba M; Kubová Z; Langrová J; Vít F; Szanyi J
    Doc Ophthalmol; 2012 Jun; 124(3):211-23. PubMed ID: 22431242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the ensemble average of visual evoked potentials. II. Simulations and experiments.
    Cuypers MH; Thijssen JM
    Technol Health Care; 1995 Mar; 3(1):33-42. PubMed ID: 7767686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional shifts have little effect on the waveform of the chromatic onset VEP.
    Highsmith J; Crognale MA
    Ophthalmic Physiol Opt; 2010 Sep; 30(5):525-33. PubMed ID: 20883336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single P100 visual evoked potential analyses in man.
    Rosenstein GZ; Furman V; Sohmer H; Attias J; Abraham F
    Int J Neurosci; 1994 Dec; 79(3-4):251-65. PubMed ID: 7744566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolating visual evoked responses--comparing signal identification algorithms.
    Wright TJ; Nilsson J; Westall C
    J Clin Neurophysiol; 2011 Aug; 28(4):404-11. PubMed ID: 21811132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic visual evoked potentials indicate early dysfunction of color processing in young patients with demyelinating disease.
    Tekavčič Pompe M; Perovšek D; Šuštar M
    Doc Ophthalmol; 2020 Oct; 141(2):157-168. PubMed ID: 32157494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual evoked potentials in konzo, a spastic paraparesis of acute onset in Africa.
    Mwanza JC; Lysebo DE; Kayembe DL; Tshala-Katumbay D; Nyamabo LK; Tylleskär T; Plant GT
    Ophthalmologica; 2003; 217(6):381-6. PubMed ID: 14573969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stimulus orientation on spatial frequency function of the visual evoked potential.
    Arakawa K; Tobimatsu S; Kurita-Tashima S; Nakayama M; Kira JI; Kato M
    Exp Brain Res; 2000 Mar; 131(1):121-5. PubMed ID: 10759177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEP.
    Moskowitz A; Sokol S
    Electroencephalogr Clin Neurophysiol; 1983 Jul; 56(1):1-15. PubMed ID: 6190626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation-reversal VEP: comparison of phase and peak latencies in adults and infants.
    Lee J; Birtles D; Wattam-Bell J; Atkinson J; Braddick O
    Vision Res; 2012 Jun; 63():50-7. PubMed ID: 22575338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual evoked potentials to red-green stimulation in schoolchildren.
    Pompe MT; Kranjc BS; Brecelj J
    Vis Neurosci; 2006; 23(3-4):447-51. PubMed ID: 16961979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in vernier evoked cortical potential with age.
    Li RW; Edwards MH; Brown B
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1119-24. PubMed ID: 11274094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the ensemble average of visual evoked potentials. I. Theory of correction by spectral phase difference methods.
    Thijssen JM; Cuypers MH
    Technol Health Care; 1995 Mar; 3(1):23-31. PubMed ID: 7767684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.