These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24146608)

  • 1. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses.
    Buck PM; Kumar S; Singh SK
    PLoS Comput Biol; 2013; 9(10):e1003291. PubMed ID: 24146608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubis: optimize your protein.
    De Baets G; Van Durme J; van der Kant R; Schymkowitz J; Rousseau F
    Bioinformatics; 2015 Aug; 31(15):2580-2. PubMed ID: 25792555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation prone regions in human proteome: Insights from large-scale data analyses.
    Prabakaran R; Goel D; Kumar S; Gromiha MM
    Proteins; 2017 Jun; 85(6):1099-1118. PubMed ID: 28257595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation prone regions and gatekeeping residues in protein sequences.
    Beerten J; Schymkowitz J; Rousseau F
    Curr Top Med Chem; 2012; 12(22):2470-8. PubMed ID: 23339301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do thermophilic proteins resist aggregation?
    Thangakani AM; Kumar S; Velmurugan D; Gromiha MS
    Proteins; 2012 Apr; 80(4):1003-15. PubMed ID: 22389104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential aggregation-prone regions in complementarity-determining regions of antibodies and their contribution towards antigen recognition: a computational analysis.
    Wang X; Singh SK; Kumar S
    Pharm Res; 2010 Aug; 27(8):1512-29. PubMed ID: 20422267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubis: a webserver to reduce protein aggregation through mutation.
    Van Durme J; De Baets G; Van Der Kant R; Ramakers M; Ganesan A; Wilkinson H; Gallardo R; Rousseau F; Schymkowitz J
    Protein Eng Des Sel; 2016 Aug; 29(8):285-9. PubMed ID: 27284085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting aggregation-prone sequences in proteins.
    De Baets G; Schymkowitz J; Rousseau F
    Essays Biochem; 2014; 56():41-52. PubMed ID: 25131585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between potential aggregation-prone regions and HLA-DR-binding T-cell immune epitopes: implications for rational design of novel and follow-on therapeutic antibodies.
    Kumar S; Mitchell MA; Rup B; Singh SK
    J Pharm Sci; 2012 Aug; 101(8):2686-701. PubMed ID: 22619033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically disordered and aggregation prone regions underlie β-aggregation in S100 proteins.
    Carvalho SB; Botelho HM; Leal SS; Cardoso I; Fritz G; Gomes CM
    PLoS One; 2013; 8(10):e76629. PubMed ID: 24098542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically semi-disordered state and its role in induced folding and protein aggregation.
    Zhang T; Faraggi E; Li Z; Zhou Y
    Cell Biochem Biophys; 2013; 67(3):1193-205. PubMed ID: 23723000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving Forces for Nonnative Protein Aggregation and Approaches to Predict Aggregation-Prone Regions.
    Meric G; Robinson AS; Roberts CJ
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():139-159. PubMed ID: 28592179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.
    Naranjo Y; Pons M; Konrat R
    Mol Biosyst; 2012 Jan; 8(1):411-6. PubMed ID: 22108787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic analysis of short internal indels and their impact on protein folding.
    Kim R; Guo JT
    BMC Struct Biol; 2010 Aug; 10():24. PubMed ID: 20684774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis on the information of folding initiation segments in ferredoxin-like fold proteins.
    Matsuoka M; Kikuchi T
    BMC Struct Biol; 2014 May; 14():15. PubMed ID: 24884463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast Proteins may Reversibly Aggregate like Amphiphilic Molecules.
    Dasmeh P; Wagner A
    J Mol Biol; 2022 Jan; 434(2):167352. PubMed ID: 34774567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AggreProt: a web server for predicting and engineering aggregation prone regions in proteins.
    Planas-Iglesias J; Borko S; Swiatkowski J; Elias M; Havlasek M; Salamon O; Grakova E; Kunka A; Martinovic T; Damborsky J; Martinovic J; Bednar D
    Nucleic Acids Res; 2024 Jul; 52(W1):W159-W169. PubMed ID: 38801076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of intrinsic disorder in protein domains and families: II. functions of conserved disorder.
    Chen JW; Romero P; Uversky VN; Dunker AK
    J Proteome Res; 2006 Apr; 5(4):888-98. PubMed ID: 16602696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.