BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24146647)

  • 1. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating variability from motor primitives during infant locomotor development.
    Hinnekens E; Barbu-Roth M; Do MC; Berret B; Teulier C
    Elife; 2023 Jul; 12():. PubMed ID: 37523218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learned graphical models for probabilistic planning provide a new class of movement primitives.
    Rückert EA; Neumann G; Toussaint M; Maass W
    Front Comput Neurosci; 2012; 6():97. PubMed ID: 23293598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of Muscle Synergies in the Primate Brain.
    Overduin SA; d'Avella A; Roh J; Carmena JM; Bizzi E
    J Neurosci; 2015 Sep; 35(37):12615-24. PubMed ID: 26377453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task space exploration improves adaptation after incompatible virtual surgeries.
    Berger DJ; Borzelli D; d'Avella A
    J Neurophysiol; 2022 Apr; 127(4):1127-1146. PubMed ID: 35320031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modular neural model of motor synergies.
    Byadarhaly KV; Perdoor MC; Minai AA
    Neural Netw; 2012 Aug; 32():96-108. PubMed ID: 22394689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning parametric dynamic movement primitives from multiple demonstrations.
    Matsubara T; Hyon SH; Morimoto J
    Neural Netw; 2011 Jun; 24(5):493-500. PubMed ID: 21388784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase portraits as movement primitives for fast humanoid robot control.
    Maeda G; Koç O; Morimoto J
    Neural Netw; 2020 Sep; 129():109-122. PubMed ID: 32505964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of motor modularity on performance, learning and generalizability in upper-extremity reaching: a computational analysis.
    Al Borno M; Hicks JL; Delp SL
    J R Soc Interface; 2020 Jun; 17(167):20200011. PubMed ID: 32486950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modularity for Motor Control and Motor Learning.
    d'Avella A
    Adv Exp Med Biol; 2016; 957():3-19. PubMed ID: 28035557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding primitives generation policy learning for robotic arm to overcome catastrophic forgetting in sequential multi-tasks learning.
    Xiong F; Liu Z; Huang K; Yang X; Qiao H; Hussain A
    Neural Netw; 2020 Sep; 129():163-173. PubMed ID: 32535306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MACOP modular architecture with control primitives.
    Waegeman T; Hermans M; Schrauwen B
    Front Comput Neurosci; 2013; 7():99. PubMed ID: 23888140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic primitives of motor behavior.
    Hogan N; Sternad D
    Biol Cybern; 2012 Dec; 106(11-12):727-39. PubMed ID: 23124919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of reaching movements by muscle synergy combinations.
    d'Avella A; Lacquaniti F
    Front Comput Neurosci; 2013; 7():42. PubMed ID: 23626534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the encoding capacity of human motor adaptation.
    Kim S; Kwon J; Kim JM; Park FC; Yeo SH
    J Neurophysiol; 2021 Jul; 126(1):123-139. PubMed ID: 34077281
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.