These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24146647)

  • 21. Modular Control of Human Movement During Running: An Open Access Data Set.
    Santuz A; Ekizos A; Janshen L; Mersmann F; Bohm S; Baltzopoulos V; Arampatzis A
    Front Physiol; 2018; 9():1509. PubMed ID: 30420812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuromuscular synergies in motor control in normal and poststroke individuals.
    Israely S; Leisman G; Carmeli E
    Rev Neurosci; 2018 Aug; 29(6):593-612. PubMed ID: 29397390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hopf Bifurcations in Complex Multiagent Activity: The Signature of Discrete to Rhythmic Behavioral Transitions.
    Patil G; Nalepka P; Kallen RW; Richardson MJ
    Brain Sci; 2020 Aug; 10(8):. PubMed ID: 32784867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Between-subject variability of muscle synergies during a complex motor skill.
    Frère J; Hug F
    Front Comput Neurosci; 2012; 6():99. PubMed ID: 23293599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motor skill acquisition during a balance task as a process of optimization of motor primitives.
    de Lemos Fonseca M; Daneault JF; Vergara-Diaz G; Quixadá AP; Souza de Oliveira E Torres ÂF; Pondé de Sena E; Bomfim Cruz Vieira JP; Bigogno Reis Cazeta B; Sotero Dos Santos V; da Cruz Figueiredo T; Peña N; Bonato P; Vivas Miranda JG
    Eur J Neurosci; 2020 May; 51(10):2082-2094. PubMed ID: 31846518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shared and specific muscle synergies in natural motor behaviors.
    d'Avella A; Bizzi E
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3076-81. PubMed ID: 15708969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unifying model of concurrent spatial and temporal modularity in muscle activity.
    Delis I; Panzeri S; Pozzo T; Berret B
    J Neurophysiol; 2014 Feb; 111(3):675-93. PubMed ID: 24089400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors.
    Cheung VC; d'Avella A; Bizzi E
    J Neurophysiol; 2009 Mar; 101(3):1235-57. PubMed ID: 19091930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bootstrapping of Parameterized Skills Through Hybrid Optimization in Task and Policy Spaces.
    Queißer JF; Steil JJ
    Front Robot AI; 2018; 5():49. PubMed ID: 33500934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shared and Task-Specific Muscle Synergies during Normal Walking and Slipping.
    Nazifi MM; Yoon HU; Beschorner K; Hur P
    Front Hum Neurosci; 2017; 11():40. PubMed ID: 28220067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning.
    Diamond A; Holland OE
    Bioinspir Biomim; 2014 Mar; 9(1):016015. PubMed ID: 24523354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor synergy generalization framework for new targets in multi-planar and multi-directional reaching task.
    Kutsuzawa K; Hayashibe M
    R Soc Open Sci; 2022 May; 9(5):211721. PubMed ID: 35620009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A framework to identify structured behavioral patterns within rodent spatial trajectories.
    Donnarumma F; Prevete R; Maisto D; Fuscone S; Irvine EM; van der Meer MAA; Kemere C; Pezzulo G
    Sci Rep; 2021 Jan; 11(1):468. PubMed ID: 33432100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning to use Muscles.
    Loeb GE
    J Hum Kinet; 2021 Jan; 76():9-33. PubMed ID: 33603922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How Many Muscles? Optimal Muscles Set Search for Optimizing Myocontrol Performance.
    Camardella C; Junata M; Tse KC; Frisoli A; Tong RK
    Front Comput Neurosci; 2021; 15():668579. PubMed ID: 34690729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information.
    Delis I; Berret B; Pozzo T; Panzeri S
    Front Comput Neurosci; 2013; 7():54. PubMed ID: 23717277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An error-tuned model for sensorimotor learning.
    Ingram JN; Sadeghi M; Flanagan JR; Wolpert DM
    PLoS Comput Biol; 2017 Dec; 13(12):e1005883. PubMed ID: 29253869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Moving slowly is hard for humans: limitations of dynamic primitives.
    Park SW; Marino H; Charles SK; Sternad D; Hogan N
    J Neurophysiol; 2017 Jul; 118(1):69-83. PubMed ID: 28356477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Training of deep neural networks for the generation of dynamic movement primitives.
    Pahič R; Ridge B; Gams A; Morimoto J; Ude A
    Neural Netw; 2020 Jul; 127():121-131. PubMed ID: 32339807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.