These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24146850)

  • 1. Super-resolution imaging of bacteria in a microfluidics device.
    Cattoni DI; Fiche JB; Valeri A; Mignot T; Nöllmann M
    PLoS One; 2013; 8(10):e76268. PubMed ID: 24146850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Organization and Superesolved Segregation.
    Cattoni DI; Fiche JB; Le Gall A; Nollmann M
    Methods Mol Biol; 2018; 1805():271-289. PubMed ID: 29971723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional drift control at nano-scale in single molecule localization microscopy.
    Fan X; Gensch T; Büldt G; Zhang Y; Musha Z; Zhang W; Roncarati R; Huang R
    Opt Express; 2020 Oct; 28(22):32750-32763. PubMed ID: 33114953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live imaging of root-bacteria interactions in a microfluidics setup.
    Massalha H; Korenblum E; Malitsky S; Shapiro OH; Aharoni A
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4549-4554. PubMed ID: 28348235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues.
    Klevanski M; Herrmannsdoerfer F; Sass S; Venkataramani V; Heilemann M; Kuner T
    Nat Commun; 2020 Mar; 11(1):1552. PubMed ID: 32214101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerically Enhanced Stimulated Emission Depletion Microscopy with Adaptive Optics for Deep-Tissue Super-Resolved Imaging.
    Zdańkowski P; Trusiak M; McGloin D; Swedlow JR
    ACS Nano; 2020 Jan; 14(1):394-405. PubMed ID: 31841303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics.
    Keil W; Kutscher LM; Shaham S; Siggia ED
    Dev Cell; 2017 Jan; 40(2):202-214. PubMed ID: 28041904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for Studying Membrane-Associated Bacterial Cytoskeleton Proteins In Vivo by TIRF Microscopy.
    Cornilleau C; Chastanet A; Billaudeau C; Carballido-López R
    Methods Mol Biol; 2020; 2101():123-133. PubMed ID: 31879901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing the Requirements of High-Sensitivity Single-Molecule Imaging of Low-Copy-Number Proteins in Bacteria.
    Tuson HH; Aliaj A; Brandes ER; Simmons LA; Biteen JS
    Chemphyschem; 2016 May; 17(10):1435-40. PubMed ID: 26888309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing single molecule imaging in optofluidics and microfluidics.
    Vasdekis AE; Laporte GP
    Int J Mol Sci; 2011; 12(8):5135-56. PubMed ID: 21954349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring In Vivo Protein Dynamics Throughout the Cell Cycle Using Microfluidics.
    de Leeuw R; Brazda P; Charl Moolman M; Kerssemakers JWJ; Solano B; Dekker NH
    Methods Mol Biol; 2017; 1624():237-252. PubMed ID: 28842888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy.
    de Jong IG; Beilharz K; Kuipers OP; Veening JW
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21841760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic platform for correlative live-cell and super-resolution microscopy.
    Tam J; Cordier GA; Bálint Š; Sandoval Álvarez Á; Borbely JS; Lakadamyali M
    PLoS One; 2014; 9(12):e115512. PubMed ID: 25545548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging.
    Robinson T; Valluri P; Manning HB; Owen DM; Munro I; Talbot CB; Dunsby C; Eccleston JF; Baldwin GS; Neil MA; de Mello AJ; French PM
    Opt Lett; 2008 Aug; 33(16):1887-9. PubMed ID: 18709122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When Super-Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution.
    Yang W; Hou L; Luo C
    Small; 2023 Jun; 19(23):e2207341. PubMed ID: 36895074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule.
    Saurabh S; Perez AM; Comerci CJ; Shapiro L; Moerner WE
    J Am Chem Soc; 2016 Aug; 138(33):10398-401. PubMed ID: 27479076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization Techniques of Bacteria for Live Super-resolution Imaging Using Structured Illumination Microscopy.
    Bottomley AL; Turnbull L; Whitchurch CB; Harry EJ
    Methods Mol Biol; 2017; 1535():197-209. PubMed ID: 27914080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.
    Shtengel G; Galbraith JA; Galbraith CG; Lippincott-Schwartz J; Gillette JM; Manley S; Sougrat R; Waterman CM; Kanchanawong P; Davidson MW; Fetter RD; Hess HF
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3125-30. PubMed ID: 19202073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-Channel Super-Resolution Imaging by 3-D Structured Illumination.
    Engel U
    Methods Mol Biol; 2017; 1663():79-94. PubMed ID: 28924660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.