These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24146992)

  • 1. Form-finding model shows how cytoskeleton network stiffness is realized.
    Gong J; Zhang D; Tseng Y; Li B; Wirtz D; Schafer BW
    PLoS One; 2013; 8(10):e77417. PubMed ID: 24146992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discontinuous unbinding transitions of filament bundles.
    Kierfeld J; Kühne T; Lipowsky R
    Phys Rev Lett; 2005 Jul; 95(3):038102. PubMed ID: 16090774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoskeletal bundle mechanics.
    Bathe M; Heussinger C; Claessens MM; Bausch AR; Frey E
    Biophys J; 2008 Apr; 94(8):2955-64. PubMed ID: 18055529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanochemical model of actin filaments.
    Yogurtcu ON; Kim JS; Sun SX
    Biophys J; 2012 Aug; 103(4):719-27. PubMed ID: 22947933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affine and non-affine deformations quantified in cytoskeletal networks through three-dimensional form-finding model.
    Wang Y; Gong J; Wirtz D; Schafer BW
    J Mech Behav Biomed Mater; 2017 Aug; 72():52-65. PubMed ID: 28448922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling.
    Chandrasekaran A; Upadhyaya A; Papoian GA
    PLoS Comput Biol; 2019 Jul; 15(7):e1007156. PubMed ID: 31287817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions.
    Maxian O; Peláez RP; Mogilner A; Donev A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009240. PubMed ID: 34871298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization and dynamics of cross-linked actin filaments in confined environments.
    Akenuwa OH; Abel SM
    Biophys J; 2023 Jan; 122(1):30-42. PubMed ID: 36461638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.
    Bidone TC; Tang H; Vavylonis D
    Biophys J; 2014 Dec; 107(11):2618-28. PubMed ID: 25468341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of branched actin filaments.
    Razbin M; Falcke M; Benetatos P; Zippelius A
    Phys Biol; 2015 Jun; 12(4):046007. PubMed ID: 26040560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of filament assembly define cytoskeletal network morphology.
    Foffano G; Levernier N; Lenz M
    Nat Commun; 2016 Dec; 7():13827. PubMed ID: 28000681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between Brownian motion and cross-linking controls bundling dynamics in actin networks.
    Maxian O; Donev A; Mogilner A
    Biophys J; 2022 Apr; 121(7):1230-1245. PubMed ID: 35196512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical heterogeneity favors fragmentation of strained actin filaments.
    De La Cruz EM; Martiel JL; Blanchoin L
    Biophys J; 2015 May; 108(9):2270-81. PubMed ID: 25954884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of twist-bend coupling in actin filaments.
    De La Cruz EM; Roland J; McCullough BR; Blanchoin L; Martiel JL
    Biophys J; 2010 Sep; 99(6):1852-60. PubMed ID: 20858430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of viscoelastic properties of crosslinked actin networks.
    Kim T; Hwang W; Lee H; Kamm RD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000439. PubMed ID: 19609348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of cross-linked actin networks - Influence of geometrical parameters and cross-link compliance.
    Fallqvist B; Kulachenko A; Kroon M
    J Theor Biol; 2014 Jun; 350():57-69. PubMed ID: 24491254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.
    Ijpma G; Al-Jumaily AM; Cairns SP; Sieck GC
    J Appl Physiol (1985); 2011 Sep; 111(3):735-42. PubMed ID: 21659490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment of actin filament streams driven by myosin motors in crowded environments.
    Iwase T; Sasaki Y; Hatori K
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2717-2725. PubMed ID: 28754385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turnover versus treadmilling in actin network assembly and remodeling.
    Ni Q; Papoian GA
    Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):562-570. PubMed ID: 31525282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties.
    Martiel JL; Michelot A; Boujemaa-Paterski R; Blanchoin L; Berro J
    Biophys J; 2020 Jan; 118(1):182-192. PubMed ID: 31791547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.