These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24147133)

  • 1. A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector.
    Kariu T; Smith A; Yang X; Pal U
    PLoS One; 2013; 8(10):e78376. PubMed ID: 24147133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens.
    Yang X; Koči J; Smith AA; Zhuang X; Sharma K; Dutta S; Rana VS; Kitsou C; Yas OB; Mongodin EF; Pal U
    Cell Microbiol; 2021 Feb; 23(2):e13275. PubMed ID: 33006213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ixodes scapularis Protein Disulfide Isomerase Contributes to Borrelia burgdorferi Colonization of the Vector.
    Cao Y; Rosen C; Arora G; Gupta A; Booth CJ; Murfin KE; Cerny J; Marin Lopez A; Chuang YM; Tang X; Pal U; Ring A; Narasimhan S; Fikrig E
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32928964
    [No Abstract]   [Full Text] [Related]  

  • 4. Susceptibility of the black-legged tick, Ixodes scapularis, to the Lyme disease spirochete, Borrelia burgdorferi.
    Burgdorfer W; Gage KL
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Dec; 263(1-2):15-20. PubMed ID: 3577477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector.
    Yang X; Smith AA; Williams MS; Pal U
    J Biol Chem; 2014 May; 289(18):12813-22. PubMed ID: 24662290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus.
    Jacquet M; Genné D; Belli A; Maluenda E; Sarr A; Voordouw MJ
    Parasit Vectors; 2017 May; 10(1):257. PubMed ID: 28545520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tick gut barriers impacting tick-microbe interactions and pathogen persistence.
    Kitsou C; Foor SD; Dutta S; Bista S; Pal U
    Mol Microbiol; 2021 Nov; 116(5):1241-1248. PubMed ID: 34570926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada.
    Scott JD; Anderson JF; Durden LA
    J Parasitol; 2012 Feb; 98(1):49-59. PubMed ID: 21864130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invasion of the lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity.
    Hamer SA; Tsao JI; Walker ED; Hickling GJ
    Ecohealth; 2010 Aug; 7(1):47-63. PubMed ID: 20229127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete.
    Narasimhan S; Rajeevan N; Liu L; Zhao YO; Heisig J; Pan J; Eppler-Epstein R; Deponte K; Fish D; Fikrig E
    Cell Host Microbe; 2014 Jan; 15(1):58-71. PubMed ID: 24439898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiology of the Lyme disease spirochete, Borrelia burgdorferi, in ixodid ticks.
    Burgdorfer W; Hayes SF; Corwin D
    Rev Infect Dis; 1989; 11 Suppl 6():S1442-50. PubMed ID: 2682956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector.
    Kung F; Anguita J; Pal U
    Future Microbiol; 2013 Jan; 8(1):41-56. PubMed ID: 23252492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii.
    Jacquet M; Margos G; Fingerle V; Voordouw MJ
    Parasit Vectors; 2016 Dec; 9(1):645. PubMed ID: 27986081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Lyme borreliae proteins promoting vertebrate host blood-specific spirochete survival in Ixodes scapularis nymphs using artificial feeding chambers.
    Hart T; Yang X; Pal U; Lin YP
    Ticks Tick Borne Dis; 2018 Jul; 9(5):1057-1063. PubMed ID: 29653905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tick-host-pathogen interactions in Lyme borreliosis.
    Hovius JW; van Dam AP; Fikrig E
    Trends Parasitol; 2007 Sep; 23(9):434-8. PubMed ID: 17656156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph.
    Zhang L; Zhang Y; Adusumilli S; Liu L; Narasimhan S; Dai J; Zhao YO; Fikrig E
    PLoS Pathog; 2011 Jun; 7(6):e1002079. PubMed ID: 21695244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of the Lyme disease spirochete Borrelia burgdorferi to infect rodents and three species of human-biting ticks (blacklegged tick, American dog tick, lone star tick) (Acari:Ixodidae).
    Piesman J; Happ CM
    J Med Entomol; 1997 Jul; 34(4):451-6. PubMed ID: 9220680
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Kitsou C; Pal U
    Front Cell Infect Microbiol; 2018; 8():176. PubMed ID: 29896452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vector competence of the blacklegged tick, Ixodes scapularis, for the recently recognized Lyme borreliosis spirochete Candidatus Borrelia mayonii.
    Dolan MC; Hojgaard A; Hoxmeier JC; Replogle AJ; Respicio-Kingry LB; Sexton C; Williams MA; Pritt BS; Schriefer ME; Eisen L
    Ticks Tick Borne Dis; 2016 Jul; 7(5):665-669. PubMed ID: 26922324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks.
    Crippa M; Rais O; Gern L
    Vector Borne Zoonotic Dis; 2002; 2(1):3-9. PubMed ID: 12656125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.