BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24147145)

  • 1. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.
    Nocella M; Cecchi G; Bagni MA; Colombini B
    PLoS One; 2013; 8(10):e78918. PubMed ID: 24147145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in crossbridge and non-crossbridge energetics during moderate fatigue of frog muscle fibres.
    Barclay CJ; Curtin NA; Woledge RC
    J Physiol; 1993 Aug; 468():543-56. PubMed ID: 8254523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle.
    Westerblad H; Lännergren J
    J Muscle Res Cell Motil; 1994 Jun; 15(3):287-98. PubMed ID: 7929794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical transients of single toad stomach smooth muscle cells. Effects of lowering temperature and extracellular calcium.
    Yamakawa M; Harris DE; Fay FS; Warshaw DM
    J Gen Physiol; 1990 Apr; 95(4):697-715. PubMed ID: 2110967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical efficiency and fatigue of fast and slow muscles of the mouse.
    Barclay CJ
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):781-94. PubMed ID: 9003563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force decline during fatigue is due to both a decrease in the force per individual cross-bridge and the number of cross-bridges.
    Nocella M; Colombini B; Benelli G; Cecchi G; Bagni MA; Bruton J
    J Physiol; 2011 Jul; 589(Pt 13):3371-81. PubMed ID: 21540343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force.
    Leijding C; Viken I; Bruton JD; Andersson DC; Cheng AJ; Westerblad H
    FASEB J; 2023 Jun; 37(6):e22978. PubMed ID: 37191967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers.
    Roots H; Ball G; Talbot-Ponsonby J; King M; McBeath K; Ranatunga KW
    J Appl Physiol (1985); 2009 Feb; 106(2):378-84. PubMed ID: 19057001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue and heat production in repeated contractions of mouse skeletal muscle.
    Barclay CJ; Arnold PD; Gibbs CL
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):741-52. PubMed ID: 8576863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonged loss of force and power following fatiguing contractions in rat soleus muscles. Is low-frequency fatigue an issue during dynamic contractions?
    Herskind J; Kristensen AM; Ørtenblad N; de Paoli F; Vissing K; Overgaard K
    Am J Physiol Cell Physiol; 2022 Dec; 323(6):C1642-C1651. PubMed ID: 36317798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Hydrostatic-Pressure on Muscle Contraction: A Look Back on Some Experimental Findings.
    Ranatunga KW; Geeves MA
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of force generation and Pi release in rabbit soleus muscle fibers.
    Homsher E; Millar N
    Adv Exp Med Biol; 1993; 332():495-502; discussion 503. PubMed ID: 8109362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High temperature does not alter fatigability in intact mouse skeletal muscle fibres.
    Place N; Yamada T; Zhang SJ; Westerblad H; Bruton JD
    J Physiol; 2009 Oct; 587(Pt 19):4717-24. PubMed ID: 19675072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.
    Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H
    J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-frequency relationship during fatiguing contractions of rat medial gastrocnemius muscle.
    MacDougall KB; Devrome AN; Kristensen AM; MacIntosh BR
    Sci Rep; 2020 Jul; 10(1):11575. PubMed ID: 32665563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Ca
    Glass LD; Cheng AJ; MacIntosh BR
    Pflugers Arch; 2018 Aug; 470(8):1243-1254. PubMed ID: 29671103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.