These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24147145)

  • 21. Effect of resistance training on muscle fatigue and recovery in intact rats.
    Willems ME; Stauber WT
    Med Sci Sports Exerc; 2000 Nov; 32(11):1887-93. PubMed ID: 11079518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.
    Bruton JD; Place N; Yamada T; Silva JP; Andrade FH; Dahlstedt AJ; Zhang SJ; Katz A; Larsson NG; Westerblad H
    J Physiol; 2008 Jan; 586(1):175-84. PubMed ID: 18006575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of fatigue and oxidation on contractile function of intact muscle fibers and myofibrils isolated from the mouse diaphragm.
    Bagni MA; Colombini B; Nocella M; Pregno C; S Cornachione A; Rassier DE
    Sci Rep; 2019 Mar; 9(1):4422. PubMed ID: 30872655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of hydrostatic pressure on fatiguing frog muscle fibres.
    Vawda F; Ranatunga KW; Geeves MA
    J Muscle Res Cell Motil; 1996 Dec; 17(6):631-6. PubMed ID: 8994082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Similar effects of cooling and fatigue on eccentric and concentric force-velocity relationships in human muscle.
    De Ruiter CJ; De Haan A
    J Appl Physiol (1985); 2001 Jun; 90(6):2109-16. PubMed ID: 11356773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres.
    Roots H; Ranatunga KW
    J Muscle Res Cell Motil; 2008; 29(1):9-24. PubMed ID: 18523851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Force-velocity relationship during isometric and isotonic fatiguing contractions.
    Devrome AN; MacIntosh BR
    J Appl Physiol (1985); 2018 Sep; 125(3):706-714. PubMed ID: 29856265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.
    Westerblad H; Allen DG
    J Gen Physiol; 1991 Sep; 98(3):615-35. PubMed ID: 1761971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.
    Nelson CR; Debold EP; Fitts RH
    Am J Physiol Cell Physiol; 2014 Nov; 307(10):C939-50. PubMed ID: 25186012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle contraction and fatigue. The role of adenosine 5'-diphosphate and inorganic phosphate.
    McLester JR
    Sports Med; 1997 May; 23(5):287-305. PubMed ID: 9181667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM
    Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatigue of isolated mouse muscle due to isometric tetani and tetani with high power output.
    Cummins ME; Soomal RS; Curtin NA
    Q J Exp Physiol; 1989 Nov; 74(6):951-3. PubMed ID: 2594945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast skeletal muscle troponin activator CK-2066260 mitigates skeletal muscle weakness independently of the underlying cause.
    Cheng AJ; Ström J; Hwee DT; Malik FI; Westerblad H
    J Cachexia Sarcopenia Muscle; 2020 Dec; 11(6):1747-1757. PubMed ID: 32954682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle.
    Nocella M; Colombini B; Bagni MA; Bruton J; Cecchi G
    J Muscle Res Cell Motil; 2012 Mar; 32(6):403-9. PubMed ID: 22072314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle.
    Lännergren J; Westerblad H
    J Physiol; 1991 Mar; 434():307-22. PubMed ID: 1902515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of fatigue in the isometric electrical activation of paralyzed hand muscles of persons with tetraplegia.
    Heasman JM; Scott TR; Vare VA; Flynn RY; Gschwind CR; Middleton JW; Rutkowski SB
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):286-96. PubMed ID: 11001508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke.
    Pinniger GJ; Ranatunga KW; Offer GW
    J Physiol; 2006 Jun; 573(Pt 3):627-43. PubMed ID: 16627571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1990 May; 424():133-49. PubMed ID: 2391650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue and recovery at long and short muscle lengths after eccentric training.
    Willems ME; Stauber WT
    Med Sci Sports Exerc; 2002 Nov; 34(11):1738-43. PubMed ID: 12439077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired sarcoplasmic reticulum Ca
    Olsson K; Cheng AJ; Al-Ameri M; Wyckelsma VL; Rullman E; Westerblad H; Lanner JT; Gustafsson T; Bruton JD
    J Physiol; 2020 Feb; 598(4):773-787. PubMed ID: 31785106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.