These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24147171)

  • 1. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.
    Pizarro JC; Hills T; Senisterra G; Wernimont AK; Mackenzie C; Norcross NR; Ferguson MA; Wyatt PG; Gilbert IH; Hui R
    PLoS Negl Trop Dis; 2013; 7(10):e2492. PubMed ID: 24147171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness.
    Koh CY; Kim JE; Wetzel AB; de van der Schueren WJ; Shibata S; Ranade RM; Liu J; Zhang Z; Gillespie JR; Buckner FS; Verlinde CL; Fan E; Hol WG
    PLoS Negl Trop Dis; 2014 Apr; 8(4):e2775. PubMed ID: 24743796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of N-(3-sulfamoylphenyl)amides as Trypanosoma brucei leucyl-tRNA synthetase inhibitors.
    Li Z; Xin W; Wang Q; Zhu M; Zhou H
    Eur J Med Chem; 2021 May; 217():113319. PubMed ID: 33725631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potent antitrypanosomal activities of heat shock protein 90 inhibitors in vitro and in vivo.
    Meyer KJ; Shapiro TA
    J Infect Dis; 2013 Aug; 208(3):489-99. PubMed ID: 23630365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypanosoma brucei glycogen synthase kinase-3, a target for anti-trypanosomal drug development: a public-private partnership to identify novel leads.
    Oduor RO; Ojo KK; Williams GP; Bertelli F; Mills J; Maes L; Pryde DC; Parkinson T; Van Voorhis WC; Holler TP
    PLoS Negl Trop Dis; 2011 Apr; 5(4):e1017. PubMed ID: 21483717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiro-containing derivatives show antiparasitic activity against Trypanosoma brucei through inhibition of the trypanothione reductase enzyme.
    Turcano L; Battista T; De Haro ET; Missineo A; Alli C; Paonessa G; Colotti G; Harper S; Fiorillo A; Ilari A; Bresciani A
    PLoS Negl Trop Dis; 2020 May; 14(5):e0008339. PubMed ID: 32437349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model System Identifies Kinetic Driver of Hsp90 Inhibitor Activity against African Trypanosomes and Plasmodium falciparum.
    Meyer KJ; Caton E; Shapiro TA
    Antimicrob Agents Chemother; 2018 Aug; 62(8):. PubMed ID: 29866861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay.
    Volkov OA; Cosner CC; Brockway AJ; Kramer M; Booker M; Zhong S; Ketcherside A; Wei S; Longgood J; McCoy M; Richardson TE; Wring SA; Peel M; Klinger JD; Posner BA; De Brabander JK; Phillips MA
    ACS Infect Dis; 2017 Jul; 3(7):512-526. PubMed ID: 28350440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosome alternative oxidase, a potential therapeutic target for sleeping sickness, is conserved among Trypanosoma brucei subspecies.
    Nakamura K; Fujioka S; Fukumoto S; Inoue N; Sakamoto K; Hirata H; Kido Y; Yabu Y; Suzuki T; Watanabe Y; Saimoto H; Akiyama H; Kita K
    Parasitol Int; 2010 Dec; 59(4):560-4. PubMed ID: 20688188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical proteomic analysis reveals the drugability of the kinome of Trypanosoma brucei.
    Urbaniak MD; Mathieson T; Bantscheff M; Eberhard D; Grimaldi R; Miranda-Saavedra D; Wyatt P; Ferguson MA; Frearson J; Drewes G
    ACS Chem Biol; 2012 Nov; 7(11):1858-65. PubMed ID: 22908928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei.
    Jones C; Anderson S; Singha UK; Chaudhuri M
    Parasitol Res; 2008 Apr; 102(5):835-44. PubMed ID: 18193284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of potent inhibitors of the Trypanosoma brucei methionyl-tRNA synthetase via high-throughput orthogonal screening.
    Pedró-Rosa L; Buckner FS; Ranade RM; Eberhart C; Madoux F; Gillespie JR; Koh CY; Brown S; Lohse J; Verlinde CL; Fan E; Bannister T; Scampavia L; Hol WG; Spicer T; Hodder P
    J Biomol Screen; 2015 Jan; 20(1):122-30. PubMed ID: 25163684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.
    Abdeen S; Salim N; Mammadova N; Summers CM; Goldsmith-Pestana K; McMahon-Pratt D; Schultz PG; Horwich AL; Chapman E; Johnson SM
    Bioorg Med Chem Lett; 2016 Nov; 26(21):5247-5253. PubMed ID: 27720295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Innovative Folate Inhibitors Leveraging the Amino Dihydrotriazine Motif from Cycloguanil for Their Potential as Anti-
    Francesconi V; Rizzo M; Pozzi C; Tagliazucchi L; Konchie Simo CU; Saporito G; Landi G; Mangani S; Carbone A; Schenone S; Santarém N; Tavares J; Cordeiro-da-Silva A; Costi MP; Tonelli M
    ACS Infect Dis; 2024 Aug; 10(8):2755-2774. PubMed ID: 38953453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro and In Vivo Investigation of the Inhibition of Trypanosoma brucei Cell Growth by Lipophilic Bisphosphonates.
    Yang G; Zhu W; Kim K; Byun SY; Choi G; Wang K; Cha JS; Cho HS; Oldfield E; No JH
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7530-9. PubMed ID: 26392508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical validation of trypanothione synthetase: a potential drug target for human trypanosomiasis.
    Torrie LS; Wyllie S; Spinks D; Oza SL; Thompson S; Harrison JR; Gilbert IH; Wyatt PG; Fairlamb AH; Frearson JA
    J Biol Chem; 2009 Dec; 284(52):36137-36145. PubMed ID: 19828449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase.
    Persch E; Bryson S; Todoroff NK; Eberle C; Thelemann J; Dirdjaja N; Kaiser M; Weber M; Derbani H; Brun R; Schneider G; Pai EF; Krauth-Siegel RL; Diederich F
    ChemMedChem; 2014 Aug; 9(8):1880-91. PubMed ID: 24788386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting.
    Lüscher A; de Koning HP; Mäser P
    Curr Pharm Des; 2007; 13(6):555-67. PubMed ID: 17346174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Small-Molecule Trypanosoma brucei N-Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode.
    Spinks D; Smith V; Thompson S; Robinson DA; Luksch T; Smith A; Torrie LS; McElroy S; Stojanovski L; Norval S; Collie IT; Hallyburton I; Rao B; Brand S; Brenk R; Frearson JA; Read KD; Wyatt PG; Gilbert IH
    ChemMedChem; 2015 Nov; 10(11):1821-36. PubMed ID: 26395087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.
    Rojas Vargas JA; López AG; Pérez Y; Cos P; Froeyen M
    Parasitol Res; 2019 May; 118(5):1533-1548. PubMed ID: 30903349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.