These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24147414)

  • 1. Carryover effects in amphibians: are characteristics of the larval habitat needed to predict juvenile survival?
    Earl JE; Semlitsch RD
    Ecol Appl; 2013 Sep; 23(6):1429-42. PubMed ID: 24147414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed effects and complex life cycles: How the larval aquatic environment influences terrestrial performance and survival.
    Rumrill CT; Scott DE; Lance SL
    Environ Toxicol Chem; 2018 Oct; 37(10):2660-2669. PubMed ID: 29984847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements.
    Popescu VD; Hunter ML
    Ecol Appl; 2011 Jun; 21(4):1283-95. PubMed ID: 21774430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable temperature regimes and wetland salinity reduce performance of juvenile wood frogs.
    Dahrouge NC; Rittenhouse TAG
    Oecologia; 2022 Aug; 199(4):1021-1033. PubMed ID: 35984505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs.
    Dananay KL; Krynak KL; Krynak TJ; Benard MF
    Environ Toxicol Chem; 2015 Oct; 34(10):2417-24. PubMed ID: 26033303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of timber harvesting on pond-breeding amphibian persistence: testing the evacuation hypothesis.
    Semlitsch RD; Conner CA; Hocking DJ; Rittenhouse TA; Harper EB
    Ecol Appl; 2008 Mar; 18(2):283-9. PubMed ID: 18488596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of neonicotinoids on putative escape behavior of juvenile wood frogs (Lithobates sylvaticus) chronically exposed as tadpoles.
    Lee-Jenkins SSY; Robinson SA
    Environ Toxicol Chem; 2018 Dec; 37(12):3115-3123. PubMed ID: 30358909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex hydroperiod induced carryover responses for survival, growth, and endurance of a pond-breeding amphibian.
    Thompson CM; Popescu VD
    Oecologia; 2021 Apr; 195(4):1071-1081. PubMed ID: 33635404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Larval development and survival of pond-breeding anurans in an agricultural landscape impacted more by phytoplankton than surrounding habitat.
    Youngquist MB; Boone MD
    PLoS One; 2021; 16(7):e0255058. PubMed ID: 34310637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial habitat selection and strong density-dependent mortality in recently metamorphosed amphibians.
    Patrick DA; Harper EB; Hunter ML; Calhoun AJ
    Ecology; 2008 Sep; 89(9):2563-74. PubMed ID: 18831177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in predicting the outcome of competition based on climate change-induced phenological and body size shifts.
    Rollins HB; Benard MF
    Oecologia; 2020 Jul; 193(3):749-759. PubMed ID: 32654046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density dependence in the terrestrial life history stage of two anurans.
    Harper EB; Semlitsch RD
    Oecologia; 2007 Oct; 153(4):879-89. PubMed ID: 17622562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of host species and life stage on the helminth communities of sympatric northern leopard frogs (Lithobates pipiens) and wood frogs (Lithobates sylvaticus) in the Sheyenne National Grasslands, North Dakota.
    Gustafson KD; Newman RA; Tkach VV
    J Parasitol; 2013 Aug; 99(4):587-94. PubMed ID: 23409956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating copper toxicity and climate change to understand extinction risk to two species of pond-breeding anurans.
    Weir SM; Scott DE; Salice CJ; Lance SL
    Ecol Appl; 2016 Sep; 26(6):1721-1732. PubMed ID: 27755699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helminth community structure of sympatric eastern American toad, Bufo americanus americanus, northern leopard frog, Rana pipiens, and blue-spotted salamander, Ambystoma laterale, from southeastern Wisconsin.
    Bolek MG; Coggins JR
    J Parasitol; 2003 Aug; 89(4):673-80. PubMed ID: 14533672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival.
    Scott DE; Casey ED; Donovan MF; Lynch TK
    Oecologia; 2007 Sep; 153(3):521-32. PubMed ID: 17530291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential sensitivity to the antifouling chemical medetomidine between wood frog and American toad tadpoles with evidence for low-dose stimulation and high-dose inhibition of metamorphosis.
    Fong PP; Lambert OJ; Hoagland ML; Kurtz ER
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19470-19479. PubMed ID: 29730754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal occurrence and community structure of helminth parasites in southern leopard frogs, Rana sphenocephala, from north central Oklahoma.
    Vhora MS; Bolek MG
    Parasitol Res; 2015 Mar; 114(3):1197-206. PubMed ID: 25566773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metamorphosis of two amphibian species after chronic cadmium exposure in outdoor aquatic mesocosms.
    James SM; Little EE; Semlitsch RD
    Environ Toxicol Chem; 2005 Aug; 24(8):1994-2001. PubMed ID: 16152972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of natural selection on size at metamorphosis in water frogs.
    Altwegg R; Reyer HU
    Evolution; 2003 Apr; 57(4):872-82. PubMed ID: 12778556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.