These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24147457)
81. Crystal structure of human heme oxygenase-1. Schuller DJ; Wilks A; Ortiz de Montellano PR; Poulos TL Nat Struct Biol; 1999 Sep; 6(9):860-7. PubMed ID: 10467099 [TBL] [Abstract][Full Text] [Related]
82. Crystal structures of ferrous and CO-, CN(-)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1. Sugishima M; Sakamoto H; Noguchi M; Fukuyama K Biochemistry; 2003 Aug; 42(33):9898-905. PubMed ID: 12924938 [TBL] [Abstract][Full Text] [Related]
84. Ligation of the iron in the heme-heme oxygenase complex: X-ray absorption, electronic absorption and magnetic circular dichroism studies. Hawkins BK; Wilks A; Powers LS; Ortiz de Montellano PR; Dawson JH Biochim Biophys Acta; 1996 Jul; 1295(2):165-73. PubMed ID: 8695642 [TBL] [Abstract][Full Text] [Related]
85. Heme oxygenation and the widening paradigm of heme degradation. Wilks A; Heinzl G Arch Biochem Biophys; 2014 Feb; 544():87-95. PubMed ID: 24161941 [TBL] [Abstract][Full Text] [Related]
86. Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: two-electron oxidized Fe(III) porphyrin derivatives. Watanabe Y J Biol Inorg Chem; 2001 Oct; 6(8):846-56. PubMed ID: 11713692 [TBL] [Abstract][Full Text] [Related]
87. Electrosynthesis of Verdoheme and Biliverdin Derivatives Following Enzymatic Pathways. Lashgari A; Wang X; Krause JA; Sinha S; Jiang JJ J Am Chem Soc; 2024 Jun; 146(23):15955-15964. PubMed ID: 38814055 [TBL] [Abstract][Full Text] [Related]
88. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction. Stranava M; Martínková M; Stiborová M; Man P; Kitanishi K; Muchová L; Vítek L; Martínek V; Shimizu T J Inorg Biochem; 2014 Nov; 140():29-38. PubMed ID: 25046385 [TBL] [Abstract][Full Text] [Related]
91. O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation. Matsui T; Nakajima A; Fujii H; Matera KM; Migita CT; Yoshida T; Ikeda-Saito M J Biol Chem; 2005 Nov; 280(44):36833-40. PubMed ID: 16115896 [TBL] [Abstract][Full Text] [Related]
92. The reactions of heme- and verdoheme-heme oxygenase-1 complexes with FMN-depleted NADPH-cytochrome P450 reductase. Electrons required for verdoheme oxidation can be transferred through a pathway not involving FMN. Higashimoto Y; Sato H; Sakamoto H; Takahashi K; Palmer G; Noguchi M J Biol Chem; 2006 Oct; 281(42):31659-67. PubMed ID: 16928691 [TBL] [Abstract][Full Text] [Related]
94. Alternative cyanide-binding modes to the haem iron in haem oxygenase. Sugishima M; Oda K; Ogura T; Sakamoto H; Noguchi M; Fukuyama K Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Jun; 63(Pt 6):471-4. PubMed ID: 17554165 [TBL] [Abstract][Full Text] [Related]
95. Dioxygen activation for the self-degradation of heme: reaction mechanism and regulation of heme oxygenase. Matsui T; Iwasaki M; Sugiyama R; Unno M; Ikeda-Saito M Inorg Chem; 2010 Apr; 49(8):3602-9. PubMed ID: 20380462 [TBL] [Abstract][Full Text] [Related]