BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24147603)

  • 1. Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos.
    Asthana S; Gupta PK; Chaurasia M; Dube A; Chourasia MK
    Expert Opin Drug Deliv; 2013 Dec; 10(12):1633-51. PubMed ID: 24147603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging role of vesicular carriers for therapy of visceral leishmaniasis: conventional versus novel.
    Kumar N; Gupta S; Dube A; Vyas SP
    Crit Rev Ther Drug Carrier Syst; 2010; 27(6):461-507. PubMed ID: 21175419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured delivery systems with improved leishmanicidal activity: a critical review.
    Bruni N; Stella B; Giraudo L; Della Pepa C; Gastaldi D; Dosio F
    Int J Nanomedicine; 2017; 12():5289-5311. PubMed ID: 28794624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Nanosystems and Strategies for Managing Leishmaniasis.
    Vaghela R; Kulkarni PK; Osmani RAM; Bhosale RR; Naga Sravan Kumar Varma V
    Curr Drug Targets; 2017; 18(14):1598-1621. PubMed ID: 27033193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of nano-carriers for
    Askarizadeh A; Badiee A; Khamesipour A
    Expert Opin Drug Deliv; 2020 Feb; 17(2):167-187. PubMed ID: 31914821
    [No Abstract]   [Full Text] [Related]  

  • 6. Application of nanotechnology in treatment of leishmaniasis: A Review.
    Akbari M; Oryan A; Hatam G
    Acta Trop; 2017 Aug; 172():86-90. PubMed ID: 28460833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug delivery strategies for therapy of visceral leishmaniasis.
    Gupta S; Pal A; Vyas SP
    Expert Opin Drug Deliv; 2010 Mar; 7(3):371-402. PubMed ID: 20201740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends.
    Badiee A; Heravi Shargh V; Khamesipour A; Jaafari MR
    Vaccine; 2013 Jan; 31(5):735-49. PubMed ID: 23219436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TIO2@AG nanoparticles - Nigella sativa oil combinations.
    Abamor ES; Allahverdiyev AM
    Exp Parasitol; 2016 Jul; 166():150-63. PubMed ID: 27109311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes.
    Kar N; Chakraborty S; De AK; Ghosh S; Bera T
    Eur J Pharm Sci; 2017 Jun; 104():196-211. PubMed ID: 28400285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal drug carriers: achievements and perspectives.
    Barratt G
    Cell Mol Life Sci; 2003 Jan; 60(1):21-37. PubMed ID: 12613656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promising nanotherapy in treating leishmaniasis.
    de Souza A; Marins DSS; Mathias SL; Monteiro LM; Yukuyama MN; Scarim CB; Löbenberg R; Bou-Chacra NA
    Int J Pharm; 2018 Aug; 547(1-2):421-431. PubMed ID: 29886097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for the design of orally bioavailable antileishmanial treatments.
    Pham TT; Loiseau PM; Barratt G
    Int J Pharm; 2013 Sep; 454(1):539-52. PubMed ID: 23871737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis.
    Kansal S; Tandon R; Dwivedi P; Misra P; Verma PR; Dube A; Mishra PR
    J Antimicrob Chemother; 2012 Nov; 67(11):2650-60. PubMed ID: 22872448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect.
    Abamor ES; Allahverdiyev AM; Bagirova M; Rafailovich M
    Acta Trop; 2017 May; 169():30-42. PubMed ID: 28111133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug delivery: lessons to be learnt from Leishmania studies.
    Shaw CD; Carter KC
    Nanomedicine (Lond); 2014 Jul; 9(10):1531-44. PubMed ID: 25253500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Role of Nanoparticles in Amphotericin B Delivery.
    Zaioncz S; Khalil NM; Mainardes RM
    Curr Pharm Des; 2017; 23(3):509-521. PubMed ID: 27799043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages.
    Borborema SE; Schwendener RA; Osso JA; de Andrade HF; do Nascimento N
    Int J Antimicrob Agents; 2011 Oct; 38(4):341-7. PubMed ID: 21783345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpressed Macrophage Mannose Receptor Targeted Nanocapsules- Mediated Cargo Delivery Approach for Eradication of Resident Parasite: In Vitro and In Vivo Studies.
    Asthana S; Gupta PK; Jaiswal AK; Dube A; Chourasia MK
    Pharm Res; 2015 Aug; 32(8):2663-77. PubMed ID: 25715698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations of Current Therapeutic Options, Possible Drug Targets and Scope of Natural Products in Control of Leishmaniasis.
    Tiwari N; Gedda MR; Tiwari VK; Singh SP; Singh RK
    Mini Rev Med Chem; 2018; 18(1):26-41. PubMed ID: 28443518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.