These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24147650)

  • 1. Real-time gamma imaging of technetium transport through natural and engineered porous materials for radioactive waste disposal.
    Corkhill CL; Bridge JW; Chen XC; Hillel P; Thornton SF; Romero-Gonzalez ME; Banwart SA; Hyatt NC
    Environ Sci Technol; 2013 Dec; 47(23):13857-64. PubMed ID: 24147650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.
    Benbow SJ; Rivett MO; Chittenden N; Herbert AW; Watson S; Williams SJ; Norris S
    J Contam Hydrol; 2014 Oct; 167():1-22. PubMed ID: 25147021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retardation of uranium and thorium by a cementitious backfill developed for radioactive waste disposal.
    Felipe-Sotelo M; Hinchliff J; Field LP; Milodowski AE; Preedy O; Read D
    Chemosphere; 2017 Jul; 179():127-138. PubMed ID: 28364648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.
    Yi S; Ma H; Zheng C; Zhu X; Wang H; Li X; Hu X; Qin J
    Sci Total Environ; 2012 Jan; 414():624-31. PubMed ID: 22119030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremophilic microbial metabolism and radioactive waste disposal.
    Butterworth SJ; Barton F; Lloyd JR
    Extremophiles; 2023 Oct; 27(3):27. PubMed ID: 37839067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of precipitation, sorption and stable of isotope on maximum release rates of radionuclides from engineered barrier system (EBS) in deep repository.
    Malekifarsani A; Skachek MA
    J Environ Radioact; 2009 Oct; 100(10):807-14. PubMed ID: 19027996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of POFA -Cementitious material as backfill barrier in DSRS borehole disposal:
    Phillip E; Khoo KS; Yusof MAW; Abdel Rahman RO
    J Environ Manage; 2021 Feb; 280():111703. PubMed ID: 33288318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial impacts on
    Smith SL; Boothman C; Williams HA; Ellis BL; Wragg J; West JM; Lloyd JR
    Sci Total Environ; 2017 Jan; 575():485-495. PubMed ID: 27751688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubility constraints affecting the migration of selenium through the cementitious backfill of a geological disposal facility.
    Felipe-Sotelo M; Hinchliff J; Evans NDM; Read D
    J Hazard Mater; 2016 Mar; 305():21-29. PubMed ID: 26642443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple determination of (99)Tc in radioactive waste using Tc extraction disk and imaging plates.
    Kameo Y; Katayama A; Hoshi A; Haraga T; Nakashima M
    Appl Radiat Isot; 2010 Jan; 68(1):139-43. PubMed ID: 19740672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of
    Rozov KB; Rumynin VG; Nikulenkov AM; Leskova PG
    J Environ Radioact; 2018 Dec; 192():513-523. PubMed ID: 30114622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.
    Wilson JC; Thorne MC; Towler G; Norris S
    J Radiol Prot; 2011 Dec; 31(4):411-30. PubMed ID: 22089948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 2. Contaminant release model.
    Cantrell KJ; Krupka KM; Deutsch WJ; Lindberg MJ
    Environ Sci Technol; 2006 Jun; 40(12):3755-61. PubMed ID: 16830538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the non-pertechnetate species in Hanford waste tanks, Tc(I)--carbonyl complexes.
    Lukens WW; Shuh DK; Schroeder NC; Ashley KR
    Environ Sci Technol; 2004 Jan; 38(1):229-33. PubMed ID: 14740740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.
    Jordan AB; Boukhalfa H; Caporuscio FA; Robinson BA; Stauffer PH
    Environ Sci Technol; 2015 Jun; 49(11):6783-90. PubMed ID: 25965632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization and geological disposal of nuclear fuel waste.
    Tait JC
    Can J Physiol Pharmacol; 1984 Aug; 62(8):979-85. PubMed ID: 6488089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of radioactive waste generated during the cyclotron production of
    Stothers LA; Hou X; Vuckovic M; Buckley K; BĂ©nard F; Schaffer P; Celler A
    Phys Med Biol; 2019 Feb; 64(5):055008. PubMed ID: 30669132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydrodynamic chromatography on colloid-facilitated migration of radionuclides in the fractured rock.
    Jen CP; Li SH
    Waste Manag; 2001; 21(6):499-509. PubMed ID: 11478617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloids in the mortar backfill of a cementitious repository for radioactive waste.
    Wieland E; Spieler P
    Waste Manag; 2001; 21(6):511-23. PubMed ID: 11478618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring Tc dynamics in a bioreduced sediment: an investigation with gamma camera imaging of (99m)Tc-pertechnetate and (99m)Tc-DTPA.
    Vandehey NT; O'Neil JP; Slowey AJ; Boutchko R; Druhan JL; Moses WW; Nico PS
    Environ Sci Technol; 2012 Nov; 46(22):12583-90. PubMed ID: 23078357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.