BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

710 related articles for article (PubMed ID: 24147659)

  • 21. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapidly alternating photoperiods disrupt central and peripheral rhythmicity and decrease plasma glucose, but do not affect glucose tolerance or insulin secretion in sheep.
    Varcoe TJ; Gatford KL; Voultsios A; Salkeld MD; Boden MJ; Rattanatray L; Kennaway DJ
    Exp Physiol; 2014 Sep; 99(9):1214-28. PubMed ID: 24951500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light entrainment of the SCN circadian clock and implications for personalized alterations of corticosterone rhythms in shift work and jet lag.
    Li Y; Androulakis IP
    Sci Rep; 2021 Sep; 11(1):17929. PubMed ID: 34504149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Molecular and Neural Mechanisms for the Robustness of the Circadian Clock].
    Yamaguchi Y
    Yakugaku Zasshi; 2015; 135(11):1265-72. PubMed ID: 26521875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work.
    Oike H; Sakurai M; Ippoushi K; Kobori M
    Biochem Biophys Res Commun; 2015 Sep; 465(3):556-61. PubMed ID: 26297949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preventive effect of L-carnitine on the disorder of lipid metabolism and circadian clock of mice subjected to chronic jet-lag.
    Xie X; Guo A; Wu T; Hu Q; Huang L; Yao C; Zhao B; Zhang W; Chi B; Lu P; Zhao Z; Fu Z
    Physiol Res; 2017 Nov; 66(5):801-810. PubMed ID: 28730830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Jet lag: therapeutic use of melatonin and possible application of melatonin analogs.
    Srinivasan V; Spence DW; Pandi-Perumal SR; Trakht I; Cardinali DP
    Travel Med Infect Dis; 2008; 6(1-2):17-28. PubMed ID: 18342269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direction-dependent effects of chronic "jet-lag" on hippocampal neurogenesis.
    Kott J; Leach G; Yan L
    Neurosci Lett; 2012 May; 515(2):177-80. PubMed ID: 22465247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resetting process of peripheral circadian gene expression after the combined reversal of feeding schedule and light/dark cycle via a 24-h light period transition in rats.
    Wu T; Ni Y; Zhuge F; Fu Z
    Physiol Res; 2010; 59(4):581-590. PubMed ID: 19929146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hormonal and pharmacological manipulation of the circadian clock: recent developments and future strategies.
    Richardson G; Tate B
    Sleep; 2000 May; 23 Suppl 3():S77-85. PubMed ID: 10809190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach.
    Mazzoccoli G; Francavilla M; Pazienza V; Benegiamo G; Piepoli A; Vinciguerra M; Giuliani F; Yamamoto T; Takumi T
    Chronobiol Int; 2012 Dec; 29(10):1300-11. PubMed ID: 23131081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus.
    Sosniyenko S; Hut RA; Daan S; Sumová A
    Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accelerating recovery from jet lag: prediction from a multi-oscillator model and its experimental confirmation in model animals.
    Kori H; Yamaguchi Y; Okamura H
    Sci Rep; 2017 Apr; 7():46702. PubMed ID: 28443630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian rhythm sleep disorders: pathophysiology and potential approaches to management.
    Zisapel N
    CNS Drugs; 2001; 15(4):311-28. PubMed ID: 11463135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The involvement of sympathetic nervous system in essence of chicken-facilitated physiological adaption and circadian resetting.
    Ni Y; Ma L; Wu T; Lim AL; Zhang W; Yang L; Nakao Y; Fu Z
    Life Sci; 2018 May; 201():54-62. PubMed ID: 29596920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.