BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24147735)

  • 1. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine.
    Sechi D; Greer B; Johnson J; Hashemi N
    Anal Chem; 2013 Nov; 85(22):10733-7. PubMed ID: 24147735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva.
    Klasner SA; Price AK; Hoeman KW; Wilson RS; Bell KJ; Culbertson CT
    Anal Bioanal Chem; 2010 Jul; 397(5):1821-9. PubMed ID: 20425107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thread/paper- and paper-based microfluidic devices for glucose assays employing artificial neural networks.
    Lee W; Gonzalez A; Arguelles P; Guevara R; Gonzalez-Guerrero MJ; Gomez FA
    Electrophoresis; 2018 Jun; 39(12):1443-1451. PubMed ID: 29660155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional paper microfluidic devices assembled using the principles of origami.
    Liu H; Crooks RM
    J Am Chem Soc; 2011 Nov; 133(44):17564-6. PubMed ID: 22004329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional, paper-based microfluidic devices containing internal timers for running time-based diagnostic assays.
    Phillips ST; Thom NK
    Methods Mol Biol; 2013; 949():185-96. PubMed ID: 23329444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.
    Ge L; Wang S; Song X; Ge S; Yu J
    Lab Chip; 2012 Sep; 12(17):3150-8. PubMed ID: 22763468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis.
    de Oliveira RAG; Camargo F; Pesquero NC; Faria RC
    Anal Chim Acta; 2017 Mar; 957():40-46. PubMed ID: 28107832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative biomarker assay with microfluidic paper-based analytical devices.
    Li X; Tian J; Shen W
    Anal Bioanal Chem; 2010 Jan; 396(1):495-501. PubMed ID: 19838826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices.
    Nie J; Liang Y; Zhang Y; Le S; Li D; Zhang S
    Analyst; 2013 Jan; 138(2):671-6. PubMed ID: 23183392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.
    Fang X; Wei S; Kong J
    Lab Chip; 2014 Mar; 14(5):911-5. PubMed ID: 24401949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thread as a matrix for biomedical assays.
    Reches M; Mirica KA; Dasgupta R; Dickey MD; Butte MJ; Whitesides GM
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1722-8. PubMed ID: 20496913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid, straightforward, and print house compatible mass fabrication method for integrating 3D paper-based microfluidics.
    Xiao L; Liu X; Zhong R; Zhang K; Zhang X; Zhou X; Lin B; Du Y
    Electrophoresis; 2013 Nov; 34(20-21):3003-7. PubMed ID: 24038030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.