These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24147760)
1. Hybrid bulk heterojunction solar cells based on the cooperative interaction of liquid crystals within quantum dots and diblock copolymers. Shi Y; Li F; Tan L; Chen Y ACS Appl Mater Interfaces; 2013 Nov; 5(22):11692-702. PubMed ID: 24147760 [TBL] [Abstract][Full Text] [Related]
2. Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer. Lee JU; Jung JW; Emrick T; Russell TP; Jo WH Nanotechnology; 2010 Mar; 21(10):105201. PubMed ID: 20154377 [TBL] [Abstract][Full Text] [Related]
3. Self-assembly of diblock polythiophenes with discotic liquid crystals on side chains for the formation of a highly ordered nanowire morphology. Chen X; Chen L; Yao K; Chen Y ACS Appl Mater Interfaces; 2013 Sep; 5(17):8321-8. PubMed ID: 23919656 [TBL] [Abstract][Full Text] [Related]
4. Sequentially Different AB Diblock and ABA Triblock Copolymers as P3HT:PCBM Interfacial Compatibilizers for Bulk-Heterojunction Photovoltaics. Fujita H; Michinobu T; Fukuta S; Koganezawa T; Higashihara T ACS Appl Mater Interfaces; 2016 Mar; 8(8):5484-92. PubMed ID: 26864393 [TBL] [Abstract][Full Text] [Related]
5. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode. Lee TH; Sue HJ; Cheng X Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040 [TBL] [Abstract][Full Text] [Related]
6. Cooperative assembly of pyrene-functionalized donor/acceptor blend for ordered nanomorphology by intermolecular noncovalent π-π interactions. Chen L; Peng S; Chen Y ACS Appl Mater Interfaces; 2014 Jun; 6(11):8115-23. PubMed ID: 24884074 [TBL] [Abstract][Full Text] [Related]
7. Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction. Eom SH; Baek MJ; Park H; Yan L; Liu S; You W; Lee SH ACS Appl Mater Interfaces; 2014 Jan; 6(2):803-10. PubMed ID: 24351036 [TBL] [Abstract][Full Text] [Related]
8. Improving the performance of P3HT-fullerene solar cells with side-chain-functionalized poly(thiophene) additives: a new paradigm for polymer design. Lobez JM; Andrew TL; Bulović V; Swager TM ACS Nano; 2012 Apr; 6(4):3044-56. PubMed ID: 22369316 [TBL] [Abstract][Full Text] [Related]
9. Development of Block Copolymers with Poly(3-hexylthiophene) Segments as Compatibilizers in Non-Fullerene Organic Solar Cells. Su YA; Maebayashi N; Fujita H; Lin YC; Chen CI; Chen WC; Michinobu T; Chueh CC; Higashihara T ACS Appl Mater Interfaces; 2020 Mar; 12(10):12083-12092. PubMed ID: 32066235 [TBL] [Abstract][Full Text] [Related]
10. Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds. Kim YJ; Cho CH; Paek K; Jo M; Park MK; Lee NE; Kim YJ; Kim BJ; Lee E J Am Chem Soc; 2014 Feb; 136(7):2767-74. PubMed ID: 24479369 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer. Liu C; Tan Y; Li C; Wu F; Chen L; Chen Y ACS Appl Mater Interfaces; 2015 Sep; 7(34):19024-33. PubMed ID: 26280810 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the active layer nanomorphology in polymer solar cells using molecular dynamics simulation. Khajeh AR; Shankar K; Choi P ACS Appl Mater Interfaces; 2013 Jun; 5(11):4617-24. PubMed ID: 23659544 [TBL] [Abstract][Full Text] [Related]
13. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array. Liao WP; Wu JJ J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138 [TBL] [Abstract][Full Text] [Related]
14. Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells. He M; Han W; Ge J; Yu W; Yang Y; Qiu F; Lin Z Nanoscale; 2011 Aug; 3(8):3159-63. PubMed ID: 21720620 [TBL] [Abstract][Full Text] [Related]
15. Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. Tan MJ; Zhong S; Li J; Chen Z; Chen W ACS Appl Mater Interfaces; 2013 Jun; 5(11):4696-701. PubMed ID: 23646864 [TBL] [Abstract][Full Text] [Related]
16. Tuning of the Morphology and Optoelectronic Properties of ZnO/P3HT/P3HT- b-PEO Hybrid Films via Spray Deposition Method. Wang K; Bießmann L; Schwartzkopf M; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2018 Jun; 10(24):20569-20577. PubMed ID: 29808684 [TBL] [Abstract][Full Text] [Related]
17. High-performance solution-based CdS-conjugated hybrid polymer solar cells. Imran M; Ikram M; Shahzadi A; Dilpazir S; Khan H; Shahzadi I; Yousaf SA; Ali S; Geng J; Huang Y RSC Adv; 2018 May; 8(32):18051-18058. PubMed ID: 35542089 [TBL] [Abstract][Full Text] [Related]
18. High efficiency of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells through precrystallining of poly(3-hexylthiophene) based layer. Chen L; Wang P; Chen Y ACS Appl Mater Interfaces; 2013 Jul; 5(13):5986-93. PubMed ID: 23763345 [TBL] [Abstract][Full Text] [Related]
19. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting. Kim H; Jeong H; An TK; Park CE; Yong K ACS Appl Mater Interfaces; 2013 Jan; 5(2):268-75. PubMed ID: 23231810 [TBL] [Abstract][Full Text] [Related]
20. Structure and properties of nano-confined poly(3-hexylthiophene) in nano-array/polymer hybrid ordered-bulk heterojunction solar cells. Foong TR; Chan KL; Hu X Nanoscale; 2012 Jan; 4(2):478-85. PubMed ID: 22095025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]