These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mesenchymal stem cells combined with barrier domes enhance vertical bone formation. Zigdon-Giladi H; Lewinson D; Bick T; Machtei EE J Clin Periodontol; 2013 Feb; 40(2):196-202. PubMed ID: 23278529 [TBL] [Abstract][Full Text] [Related]
5. Co-transplantation of endothelial progenitor cells and mesenchymal stem cells promote neovascularization and bone regeneration. Zigdon-Giladi H; Bick T; Lewinson D; Machtei EE Clin Implant Dent Relat Res; 2015 Apr; 17(2):353-9. PubMed ID: 23848193 [TBL] [Abstract][Full Text] [Related]
6. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Seebach C; Henrich D; Wilhelm K; Barker JH; Marzi I Cell Transplant; 2012; 21(8):1667-77. PubMed ID: 22507568 [TBL] [Abstract][Full Text] [Related]
7. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
8. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study. Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270 [TBL] [Abstract][Full Text] [Related]
9. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats. Al-Hezaimi K; Ramalingam S; Al-Askar M; ArRejaie AS; Nooh N; Jawad F; Aldahmash A; Atteya M; Wang CY Int J Oral Sci; 2016 Mar; 8(1):7-15. PubMed ID: 27025260 [TBL] [Abstract][Full Text] [Related]
10. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits. Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669 [TBL] [Abstract][Full Text] [Related]
11. Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: an experimental study in the dog mandible. Han X; Liu H; Wang D; Su F; Zhang Y; Zhou W; Li S; Yang R Clin Implant Dent Relat Res; 2013 Jun; 15(3):390-401. PubMed ID: 21745333 [TBL] [Abstract][Full Text] [Related]
12. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
13. Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model. Liang Y; Wen L; Shang F; Wu J; Sui K; Ding Y Arch Oral Biol; 2016 Aug; 68():123-30. PubMed ID: 27131592 [TBL] [Abstract][Full Text] [Related]
14. Assessment of Bone Regeneration Using Adipose-Derived Stem Cells in Critical-Size Alveolar Ridge Defects: An Experimental Study in a Dog Model. Alvira-González J; Sánchez-Garcés MÀ; Cairó JR; Del Pozo MR; Sánchez CM; Gay-Escoda C Int J Oral Maxillofac Implants; 2016; 31(1):196-203. PubMed ID: 26800179 [TBL] [Abstract][Full Text] [Related]
15. Alveolar bone regeneration using absorbable poly(L-lactide-co-epsilon-caprolactone)/beta-tricalcium phosphate membrane and gelatin sponge incorporating basic fibroblast growth factor. Kinoshita Y; Matsuo M; Todoki K; Ozono S; Fukuoka S; Tsuzuki H; Nakamura M; Tomihata K; Shimamoto T; Ikada Y Int J Oral Maxillofac Surg; 2008 Mar; 37(3):275-81. PubMed ID: 18262760 [TBL] [Abstract][Full Text] [Related]
16. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089 [TBL] [Abstract][Full Text] [Related]
17. Composite implantation of mesenchymal stem cells with endothelial progenitor cells enhances tissue-engineered bone formation. Usami K; Mizuno H; Okada K; Narita Y; Aoki M; Kondo T; Mizuno D; Mase J; Nishiguchi H; Kagami H; Ueda M J Biomed Mater Res A; 2009 Sep; 90(3):730-41. PubMed ID: 18570318 [TBL] [Abstract][Full Text] [Related]
18. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells. Deng Y; Zhou H; Gu P; Fan X Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):6016-23. PubMed ID: 25168901 [TBL] [Abstract][Full Text] [Related]
19. Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects. Pripatnanont P; Praserttham P; Suttapreyasri S; Leepong N; Monmaturapoj N Int J Oral Maxillofac Implants; 2016; 31(2):294-303. PubMed ID: 27004276 [TBL] [Abstract][Full Text] [Related]
20. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]