BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 24147898)

  • 1. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology.
    Honary S; Ebrahimi P; Hadianamrei R
    Pharm Dev Technol; 2014 Dec; 19(8):987-98. PubMed ID: 24147898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods.
    Cerchiara T; Abruzzo A; di Cagno M; Bigucci F; Bauer-Brandl A; Parolin C; Vitali B; Gallucci MC; Luppi B
    Eur J Pharm Biopharm; 2015 May; 92():112-9. PubMed ID: 25769679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of size and encapsulation efficiency of 5-FU loaded chitosan nanoparticles by response surface methodology.
    Honary S; Ebrahimi P; Hadianamrei R
    Curr Drug Deliv; 2013 Dec; 10(6):742-52. PubMed ID: 24274636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design.
    Abul Kalam M; Khan AA; Khan S; Almalik A; Alshamsan A
    Int J Biol Macromol; 2016 Jun; 87():329-40. PubMed ID: 26893052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity.
    Cerchiara T; Abruzzo A; Ñahui Palomino RA; Vitali B; De Rose R; Chidichimo G; Ceseracciu L; Athanassiou A; Saladini B; Dalena F; Bigucci F; Luppi B
    Eur J Pharm Sci; 2017 Mar; 99():105-112. PubMed ID: 27931851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin.
    Songsurang K; Praphairaksit N; Siraleartmukul K; Muangsin N
    Arch Pharm Res; 2011 Apr; 34(4):583-92. PubMed ID: 21544723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.
    Desai KG
    Crit Rev Ther Drug Carrier Syst; 2016; 33(2):107-58. PubMed ID: 27651100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.
    Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X
    J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q; Wang T
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route* ".
    Shah B; Khunt D; Misra M; Padh H
    Int J Biol Macromol; 2016 Aug; 89():206-18. PubMed ID: 27130654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.
    Fan W; Yan W; Xu Z; Ni H
    Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation.
    Shahbazi MA; Hamidi M; Mohammadi-Samani S
    J Pharm Pharmacol; 2013 Aug; 65(8):1118-33. PubMed ID: 23837580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.
    Gan Q; Wang T; Cochrane C; McCarron P
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavitation effect on chitosan nanoparticle size: a possible approach to protect drugs from ultrasonic stress.
    Floris A; Meloni MC; Lai F; Marongiu F; Maccioni AM; Sinico C
    Carbohydr Polym; 2013 Apr; 94(1):619-25. PubMed ID: 23544582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan nanoparticles: preparation, size evolution and stability.
    Rampino A; Borgogna M; Blasi P; Bellich B; Cesàro A
    Int J Pharm; 2013 Oct; 455(1-2):219-28. PubMed ID: 23886649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-tripolyphosphate submicron particles as the carrier of entrapped rutin.
    Konecsni K; Low NH; Nickerson MT
    Food Chem; 2012 Oct; 134(4):1775-9. PubMed ID: 23442620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.
    Keawchaoon L; Yoksan R
    Colloids Surf B Biointerfaces; 2011 May; 84(1):163-71. PubMed ID: 21296562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study.
    Hosseini SF; Zandi M; Rezaei M; Farahmandghavi F
    Carbohydr Polym; 2013 Jun; 95(1):50-6. PubMed ID: 23618238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles.
    Fàbregas A; Miñarro M; García-Montoya E; Pérez-Lozano P; Carrillo C; Sarrate R; Sánchez N; Ticó JR; Suñé-Negre JM
    Int J Pharm; 2013 Mar; 446(1-2):199-204. PubMed ID: 23434543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.