BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

792 related articles for article (PubMed ID: 24147975)

  • 1. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
    Fillmore N; Mori J; Lopaschuk GD
    Br J Pharmacol; 2014 Apr; 171(8):2080-90. PubMed ID: 24147975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac Energy Metabolism in Heart Failure.
    Lopaschuk GD; Karwi QG; Tian R; Wende AR; Abel ED
    Circ Res; 2021 May; 128(10):1487-1513. PubMed ID: 33983836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart.
    Jaswal JS; Keung W; Wang W; Ussher JR; Lopaschuk GD
    Biochim Biophys Acta; 2011 Jul; 1813(7):1333-50. PubMed ID: 21256164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.
    Fukushima A; Milner K; Gupta A; Lopaschuk GD
    Curr Pharm Des; 2015; 21(25):3654-64. PubMed ID: 26166604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart.
    Hopkins TA; Dyck JR; Lopaschuk GD
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):207-12. PubMed ID: 12546686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malonyl-CoA decarboxylase inhibition as a novel approach to treat ischemic heart disease.
    Lopaschuk GD; Stanley WC
    Cardiovasc Drugs Ther; 2006 Dec; 20(6):433-9. PubMed ID: 17136490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation.
    Mansor LS; Sousa Fialho MDL; Yea G; Coumans WA; West JA; Kerr M; Carr CA; Luiken JJFP; Glatz JFC; Evans RD; Griffin JL; Tyler DJ; Clarke K; Heather LC
    Cardiovasc Res; 2017 Jun; 113(7):737-748. PubMed ID: 28419197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity.
    Karwi QG; Sun Q; Lopaschuk GD
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid oxidation in the reperfused ischemic heart.
    Kantor PF; Dyck JR; Lopaschuk GD
    Am J Med Sci; 1999 Jul; 318(1):3-14. PubMed ID: 10408755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    Kantor PF; Lucien A; Kozak R; Lopaschuk GD
    Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The malonyl CoA axis as a potential target for treating ischaemic heart disease.
    Ussher JR; Lopaschuk GD
    Cardiovasc Res; 2008 Jul; 79(2):259-68. PubMed ID: 18499682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation.
    Zhou L; Huang H; Yuan CL; Keung W; Lopaschuk GD; Stanley WC
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H954-60. PubMed ID: 18083904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malonyl CoA control of fatty acid oxidation in the ischemic heart.
    Dyck JR; Lopaschuk GD
    J Mol Cell Cardiol; 2002 Sep; 34(9):1099-109. PubMed ID: 12392882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes.
    Yan D; Cai Y; Luo J; Liu J; Li X; Ying F; Xie X; Xu A; Ma X; Xia Z
    J Cell Mol Med; 2020 Jul; 24(14):7850-7861. PubMed ID: 32450616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation.
    Dong Z; Zhao P; Xu M; Zhang C; Guo W; Chen H; Tian J; Wei H; Lu R; Cao T
    Sci Rep; 2017 Jun; 7(1):2691. PubMed ID: 28578382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart.
    Fukushima A; Alrob OA; Zhang L; Wagg CS; Altamimi T; Rawat S; Rebeyka IM; Kantor PF; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H347-63. PubMed ID: 27261364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.
    Abo Alrob O; Lopaschuk GD
    Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Oct; 1861(10):1525-34. PubMed ID: 26996746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.