These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24148157)

  • 1. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels.
    Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motionally restricted tryptophan environments at the peptide-lipid interface of gramicidin channels.
    Mukherjee S; Chattopadhyay A
    Biochemistry; 1994 May; 33(17):5089-97. PubMed ID: 7513554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring gramicidin conformations in membranes: a fluorescence approach.
    Rawat SS; Kelkar DA; Chattopadhyay A
    Biophys J; 2004 Aug; 87(2):831-43. PubMed ID: 15298892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels.
    Sun H; Greathouse DV; Andersen OS; Koeppe RE
    J Biol Chem; 2008 Aug; 283(32):22233-43. PubMed ID: 18550546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels.
    Haldar S; Chaudhuri A; Gu H; Koeppe RE; Kombrabail M; Krishnamoorthy G; Chattopadhyay A
    J Phys Chem B; 2012 Sep; 116(36):11056-64. PubMed ID: 22892073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of tryptophan residues in gramicidin channel organization and function.
    Chattopadhyay A; Rawat SS; Greathouse DV; Kelkar DA; Koeppe RE
    Biophys J; 2008 Jul; 95(1):166-75. PubMed ID: 18339735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.
    Caillon L; Lequin O; Khemtémourian L
    Biochim Biophys Acta; 2013 Sep; 1828(9):2091-8. PubMed ID: 23707907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gramicidin conformational studies with mixed-chain unsaturated phospholipid bilayer systems.
    Cox KJ; Ho C; Lombardi JV; Stubbs CD
    Biochemistry; 1992 Feb; 31(4):1112-7. PubMed ID: 1370909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The membrane interface dictates different anchor roles for "inner pair" and "outer pair" tryptophan indole rings in gramicidin A channels.
    Gu H; Lum K; Kim JH; Greathouse DV; Andersen OS; Koeppe RE
    Biochemistry; 2011 Jun; 50(22):4855-66. PubMed ID: 21539360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength-Selective Fluorescence of a Model Transmembrane Peptide: Constrained Dynamics of Interfacial Tryptophan Anchors.
    Pal S; Koeppe RE; Chattopadhyay A
    J Fluoresc; 2018 Nov; 28(6):1317-1323. PubMed ID: 30225736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids.
    Shahidullah K; London E
    J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes.
    Salom D; Pérez-Payá E; Pascal J; Abad C
    Biochemistry; 1998 Oct; 37(40):14279-91. PubMed ID: 9760266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans.
    Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers.
    Kelkar DA; Chattopadhyay A
    Biochim Biophys Acta; 2007 May; 1768(5):1103-13. PubMed ID: 17321493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic mismatch between helices and lipid bilayers.
    Weiss TM; van der Wel PC; Killian JA; Koeppe RE; Huang HW
    Biophys J; 2003 Jan; 84(1):379-85. PubMed ID: 12524291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan orientations in membrane-bound gramicidin and melittin-a comparative linear dichroism study on transmembrane and surface-bound peptides.
    Svensson FR; Lincoln P; Nordén B; Esbjörner EK
    Biochim Biophys Acta; 2011 Jan; 1808(1):219-28. PubMed ID: 20951675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neighboring aliphatic/aromatic side chain interactions between residues 9 and 10 in gramicidin channels.
    Koeppe RE; Hatchett J; Jude AR; Providence LL; Andersen OS; Greathouse DV
    Biochemistry; 2000 Mar; 39(9):2235-42. PubMed ID: 10694389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.