These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 24148238)
1. Pneumatic cell stretching system for cardiac differentiation and culture. Kreutzer J; Ikonen L; Hirvonen J; Pekkanen-Mattila M; Aalto-Setälä K; Kallio P Med Eng Phys; 2014 Apr; 36(4):496-501. PubMed ID: 24148238 [TBL] [Abstract][Full Text] [Related]
2. Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes. Kreutzer J; Viehrig M; Pölönen RP; Zhao F; Ojala M; Aalto-Setälä K; Kallio P Biomech Model Mechanobiol; 2020 Feb; 19(1):291-303. PubMed ID: 31444593 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Fu J; Chuah YJ; Ang WT; Zheng N; Wang DA Biomater Sci; 2017 May; 5(6):1156-1173. PubMed ID: 28509913 [TBL] [Abstract][Full Text] [Related]
4. Microporous membrane growth substrates for embryonic stem cell culture and differentiation. Sheridan SD; Gil S; Wilgo M; Pitt A Methods Cell Biol; 2008; 86():29-57. PubMed ID: 18442643 [TBL] [Abstract][Full Text] [Related]
5. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Alperin C; Zandstra PW; Woodhouse KA Biomaterials; 2005 Dec; 26(35):7377-86. PubMed ID: 16023195 [TBL] [Abstract][Full Text] [Related]
6. Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. Freund C; Mummery CL J Cell Biochem; 2009 Jul; 107(4):592-9. PubMed ID: 19449339 [TBL] [Abstract][Full Text] [Related]
7. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Dambrot C; Passier R; Atsma D; Mummery CL Biochem J; 2011 Feb; 434(1):25-35. PubMed ID: 21269276 [TBL] [Abstract][Full Text] [Related]
8. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Narazaki G; Uosaki H; Teranishi M; Okita K; Kim B; Matsuoka S; Yamanaka S; Yamashita JK Circulation; 2008 Jul; 118(5):498-506. PubMed ID: 18625891 [TBL] [Abstract][Full Text] [Related]
9. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Kempf H; Olmer R; Kropp C; Rückert M; Jara-Avaca M; Robles-Diaz D; Franke A; Elliott DA; Wojciechowski D; Fischer M; Roa Lara A; Kensah G; Gruh I; Haverich A; Martin U; Zweigerdt R Stem Cell Reports; 2014 Dec; 3(6):1132-46. PubMed ID: 25454631 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Matrigel and gelatin substrata for feeder-free culture of undifferentiated mouse embryonic stem cells for toxicity testing. Greenlee AR; Kronenwetter-Koepel TA; Kaiser SJ; Liu K Toxicol In Vitro; 2005 Apr; 19(3):389-97. PubMed ID: 15713546 [TBL] [Abstract][Full Text] [Related]
11. The effect of equiaxial stretching on the osteogenic differentiation and mechanical properties of human adipose stem cells. Virjula S; Zhao F; Leivo J; Vanhatupa S; Kreutzer J; Vaughan TJ; Honkala AM; Viehrig M; Mullen CA; Kallio P; McNamara LM; Miettinen S J Mech Behav Biomed Mater; 2017 Aug; 72():38-48. PubMed ID: 28448920 [TBL] [Abstract][Full Text] [Related]
12. Cardiomyocyte differentiation of human induced pluripotent stem cells. Zwi L; Caspi O; Arbel G; Huber I; Gepstein A; Park IH; Gepstein L Circulation; 2009 Oct; 120(15):1513-23. PubMed ID: 19786631 [TBL] [Abstract][Full Text] [Related]
13. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Minami I; Yamada K; Otsuji TG; Yamamoto T; Shen Y; Otsuka S; Kadota S; Morone N; Barve M; Asai Y; Tenkova-Heuser T; Heuser JE; Uesugi M; Aiba K; Nakatsuji N Cell Rep; 2012 Nov; 2(5):1448-60. PubMed ID: 23103164 [TBL] [Abstract][Full Text] [Related]
14. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Niebruegge S; Bauwens CL; Peerani R; Thavandiran N; Masse S; Sevaptisidis E; Nanthakumar K; Woodhouse K; Husain M; Kumacheva E; Zandstra PW Biotechnol Bioeng; 2009 Feb; 102(2):493-507. PubMed ID: 18767184 [TBL] [Abstract][Full Text] [Related]
15. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. van den Heuvel NH; van Veen TA; Lim B; Jonsson MK J Mol Cell Cardiol; 2014 Feb; 67():12-25. PubMed ID: 24370890 [TBL] [Abstract][Full Text] [Related]
16. Human induced pluripotent stem cell-derived beating cardiac tissues on paper. Wang L; Xu C; Zhu Y; Yu Y; Sun N; Zhang X; Feng K; Qin J Lab Chip; 2015 Nov; 15(22):4283-90. PubMed ID: 26430714 [TBL] [Abstract][Full Text] [Related]
17. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Sun X; Nunes SS Methods; 2016 May; 101():21-6. PubMed ID: 26546730 [TBL] [Abstract][Full Text] [Related]
19. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Mummery C; Ward-van Oostwaard D; Doevendans P; Spijker R; van den Brink S; Hassink R; van der Heyden M; Opthof T; Pera M; de la Riviere AB; Passier R; Tertoolen L Circulation; 2003 Jun; 107(21):2733-40. PubMed ID: 12742992 [TBL] [Abstract][Full Text] [Related]