These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 24148648)
1. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers. Aziz O; Park EJ; Mori G; Robinovitch SN Gait Posture; 2014; 39(1):506-12. PubMed ID: 24148648 [TBL] [Abstract][Full Text] [Related]
2. An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans. Aziz O; Robinovitch SN IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):670-6. PubMed ID: 21859608 [TBL] [Abstract][Full Text] [Related]
3. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. Aziz O; Klenk J; Schwickert L; Chiari L; Becker C; Park EJ; Mori G; Robinovitch SN PLoS One; 2017; 12(7):e0180318. PubMed ID: 28678808 [TBL] [Abstract][Full Text] [Related]
4. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Aziz O; Musngi M; Park EJ; Mori G; Robinovitch SN Med Biol Eng Comput; 2017 Jan; 55(1):45-55. PubMed ID: 27106749 [TBL] [Abstract][Full Text] [Related]
5. Distinguishing near-falls from daily activities with wearable accelerometers and gyroscopes using Support Vector Machines. Aziz O; Park EJ; Mori G; Robinovitch SN Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5837-40. PubMed ID: 23367256 [TBL] [Abstract][Full Text] [Related]
6. Feature selection for elderly faller classification based on wearable sensors. Howcroft J; Kofman J; Lemaire ED J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724 [TBL] [Abstract][Full Text] [Related]
7. Detection of Near Falls Using Wearable Devices: A Systematic Review. Pang I; Okubo Y; Sturnieks D; Lord SR; Brodie MA J Geriatr Phys Ther; 2019; 42(1):48-56. PubMed ID: 29384813 [TBL] [Abstract][Full Text] [Related]
8. Analyzing Optimal Wearable Motion Sensor Placement for Accurate Classification of Fall Directions. Teng S; Kim JY; Jeon S; Gil HW; Lyu J; Chung EH; Kim KS; Nam Y Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409472 [TBL] [Abstract][Full Text] [Related]
9. The effect of window size and lead time on pre-impact fall detection accuracy using support vector machine analysis of waist mounted inertial sensor data. Aziz O; Russell CM; Park EJ; Robinovitch SN Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():30-3. PubMed ID: 25569889 [TBL] [Abstract][Full Text] [Related]
10. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector. Wang C; Redmond SJ; Lu W; Stevens MC; Lord SR; Lovell NH IEEE Trans Biomed Eng; 2017 Nov; 64(11):2729-2736. PubMed ID: 28212076 [TBL] [Abstract][Full Text] [Related]
11. Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test. Doheny EP; Walsh C; Foran T; Greene BR; Fan CW; Cunningham C; Kenny RA Gait Posture; 2013 Sep; 38(4):1021-5. PubMed ID: 23791781 [TBL] [Abstract][Full Text] [Related]
12. Threshold-based fall detection using a hybrid of tri-axial accelerometer and gyroscope. Wang FT; Chan HL; Hsu MH; Lin CK; Chao PK; Chang YJ Physiol Meas; 2018 Oct; 39(10):105002. PubMed ID: 30207983 [TBL] [Abstract][Full Text] [Related]
13. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. Howcroft J; Kofman J; Lemaire ED IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1812-1820. PubMed ID: 28358689 [TBL] [Abstract][Full Text] [Related]
14. Activity classification using a single chest mounted tri-axial accelerometer. Godfrey A; Bourke AK; Olaighin GM; van de Ven P; Nelson J Med Eng Phys; 2011 Nov; 33(9):1127-35. PubMed ID: 21636308 [TBL] [Abstract][Full Text] [Related]
15. A comparison of automatic fall detection by the cross-product and magnitude of tri-axial acceleration. Chao PK; Chan HL; Tang FT; Chen YC; Wong MK Physiol Meas; 2009 Oct; 30(10):1027-37. PubMed ID: 19713595 [TBL] [Abstract][Full Text] [Related]
16. Identifying balance impairments in people with Parkinson's disease using video and wearable sensors. Stack E; Agarwal V; King R; Burnett M; Tahavori F; Janko B; Harwin W; Ashburn A; Kunkel D Gait Posture; 2018 May; 62():321-326. PubMed ID: 29614464 [TBL] [Abstract][Full Text] [Related]
17. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults. Howcroft J; Lemaire ED; Kofman J PLoS One; 2016; 11(4):e0153240. PubMed ID: 27054878 [TBL] [Abstract][Full Text] [Related]
18. Detecting falls with wearable sensors using machine learning techniques. Özdemir AT; Barshan B Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676 [TBL] [Abstract][Full Text] [Related]
19. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors. Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066 [TBL] [Abstract][Full Text] [Related]
20. Inertial sensing-based pre-impact detection of falls involving near-fall scenarios. Lee JK; Robinovitch SN; Park EJ IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):258-66. PubMed ID: 25252283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]