These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24148667)

  • 1. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Dec; 458(2):315-23. PubMed ID: 24148667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can the cavi-precipitation process be exploited to generate smaller size drug nanocrystal?
    Sinha B; Müller RH; Möschwitzer JP
    Drug Dev Ind Pharm; 2021 Feb; 47(2):235-245. PubMed ID: 33404268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.
    Salazar J; Müller RH; Möschwitzer JP
    Eur J Pharm Sci; 2013 Jul; 49(4):565-77. PubMed ID: 23587645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production - a case study with ursodeoxycholic acid.
    Li Y; Wang Y; Yue PF; Hu PY; Wu ZF; Yang M; Yuan HL
    Pharm Dev Technol; 2014 Sep; 19(6):662-70. PubMed ID: 23869484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying.
    Hu J; Ng WK; Dong Y; Shen S; Tan RB
    Int J Pharm; 2011 Feb; 404(1-2):198-204. PubMed ID: 21056643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals.
    Martena V; Shegokar R; Di Martino P; Müller RH
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1199-205. PubMed ID: 23815299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology.
    Liu G; Zhang D; Jiao Y; Zheng D; Liu Y; Duan C; Jia L; Zhang Q; Lou H
    Int J Pharm; 2012 Jan; 422(1-2):516-22. PubMed ID: 22119965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):126-41. PubMed ID: 23333709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability.
    Morakul B; Suksiriworapong J; Leanpolchareanchai J; Junyaprasert VB
    Int J Pharm; 2013 Nov; 457(1):187-96. PubMed ID: 24076396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term stability of quercetin nanocrystals prepared by different methods.
    Kakran M; Shegokar R; Sahoo NG; Gohla S; Li L; Müller RH
    J Pharm Pharmacol; 2012 Oct; 64(10):1394-402. PubMed ID: 22943170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches.
    Salazar J; Ghanem A; Müller RH; Möschwitzer JP
    Eur J Pharm Biopharm; 2012 May; 81(1):82-90. PubMed ID: 22233547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and in vitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base.
    Hecq J; Deleers M; Fanara D; Vranckx H; Boulanger P; Le Lamer S; Amighi K
    Eur J Pharm Biopharm; 2006 Nov; 64(3):360-8. PubMed ID: 16846725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a chemically stable quercetin formulation using nanosuspension technology.
    Gao L; Liu G; Wang X; Liu F; Xu Y; Ma J
    Int J Pharm; 2011 Feb; 404(1-2):231-7. PubMed ID: 21093559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation.
    Dalvi SV; Dave RN
    Int J Pharm; 2010 Mar; 387(1-2):172-9. PubMed ID: 20026199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Ibuprofen Microparticles by Antisolvent Precipitation Crystallization Technique: Characterization, Formulation, and In Vitro Performance.
    Afrose A; White ET; Howes T; George G; Rashid A; Rintoul L; Islam N
    J Pharm Sci; 2018 Dec; 107(12):3060-3069. PubMed ID: 30098991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.
    Xia D; Gan Y; Cui F
    Curr Pharm Des; 2014; 20(3):408-35. PubMed ID: 23651396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of quercetin nanocrystals: comparison of different methods.
    Kakran M; Shegokar R; Sahoo NG; Shaal LA; Li L; Müller RH
    Eur J Pharm Biopharm; 2012 Jan; 80(1):113-21. PubMed ID: 21896330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation.
    Freag MS; Elnaggar YS; Abdallah OY
    Int J Pharm; 2013 Sep; 454(1):462-71. PubMed ID: 23830765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method.
    Zhou Y; Fang Q; Niu B; Wu B; Zhao Y; Quan G; Pan X; Wu C
    Colloids Surf B Biointerfaces; 2018 Dec; 172():372-379. PubMed ID: 30193196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.