BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24148696)

  • 1. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions.
    Garmann RF; Comas-Garcia M; Gopal A; Knobler CM; Gelbart WM
    J Mol Biol; 2014 Mar; 426(5):1050-60. PubMed ID: 24148696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of electrostatics in the assembly pathway of a single-stranded RNA virus.
    Garmann RF; Comas-Garcia M; Koay MS; Cornelissen JJ; Knobler CM; Gelbart WM
    J Virol; 2014 Sep; 88(18):10472-9. PubMed ID: 24965458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs.
    Garmann RF; Knobler CM; Gelbart WM
    Methods Mol Biol; 2018; 1776():249-265. PubMed ID: 29869247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of highly conserved arginine-rich RNA binding motif in cowpea chlorotic mottle virus capsid protein results in virion structural alterations and RNA packaging constraints.
    Annamalai P; Apte S; Wilkens S; Rao AL
    J Virol; 2005 Mar; 79(6):3277-88. PubMed ID: 15731222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Thermodynamic Driving Forces of Polyanion-Templated Virus-like Particle Assembly.
    Maassen SJ; Huskens J; Cornelissen JJLM
    J Phys Chem B; 2019 Nov; 123(46):9733-9741. PubMed ID: 31661278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of RNA Secondary Structure on the Self-Assembly of Viral Capsids.
    Beren C; Dreesens LL; Liu KN; Knobler CM; Gelbart WM
    Biophys J; 2017 Jul; 113(2):339-347. PubMed ID: 28711172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction with capsid protein alters RNA structure and the pathway for in vitro assembly of cowpea chlorotic mottle virus.
    Johnson JM; Willits DA; Young MJ; Zlotnick A
    J Mol Biol; 2004 Jan; 335(2):455-64. PubMed ID: 14672655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro quantification of the relative packaging efficiencies of single-stranded RNA molecules by viral capsid protein.
    Comas-Garcia M; Cadena-Nava RD; Rao AL; Knobler CM; Gelbart WM
    J Virol; 2012 Nov; 86(22):12271-82. PubMed ID: 22951822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient strategy for the heterologous expression and purification of soluble Cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles.
    Díaz-Valle A; García-Salcedo YM; Chávez-Calvillo G; Silva-Rosales L; Carrillo-Tripp M
    J Virol Methods; 2015 Dec; 225():23-9. PubMed ID: 26342905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoretic mobilities of a viral capsid, its capsid protein, and their relation to viral assembly.
    Vega-Acosta JR; Cadena-Nava RD; Gelbart WM; Knobler CM; Ruiz-García J
    J Phys Chem B; 2014 Feb; 118(8):1984-9. PubMed ID: 24467401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations.
    Hassani-Mehraban A; Creutzburg S; van Heereveld L; Kormelink R
    BMC Biotechnol; 2015 Aug; 15():80. PubMed ID: 26311254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio.
    Cadena-Nava RD; Comas-Garcia M; Garmann RF; Rao AL; Knobler CM; Gelbart WM
    J Virol; 2012 Mar; 86(6):3318-26. PubMed ID: 22205731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of brome mosaic virus coat protein RNA-interacting domains.
    Calhoun SL; Rao AL
    Arch Virol; 2008; 153(2):231-45. PubMed ID: 18066637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering the energy landscape of virus self-assembly to generate kinetically trapped nanoparticles.
    Burns K; Mukherjee S; Keef T; Johnson JM; Zlotnick A
    Biomacromolecules; 2010 Feb; 11(2):439-42. PubMed ID: 20136150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly and Stabilization of Hybrid Cowpea Chlorotic Mottle Virus Particles under Nearly Physiological Conditions.
    Timmermans SBPE; Vervoort DFM; Schoonen L; Nolte RJM; van Hest JCM
    Chem Asian J; 2018 Nov; 13(22):3518-3525. PubMed ID: 29975459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Viral Capsid Proteins Driven by Compressible Nanobubbles.
    Zhang M; Cao S; Liu A; Cornelissen JJLM; Lemay SG
    J Phys Chem Lett; 2020 Dec; 11(24):10421-10424. PubMed ID: 33269936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic interaction between RNA and protein capsid in cowpea chlorotic mottle virus simulated by a coarse-grain RNA model and a Monte Carlo approach.
    Zhang D; Konecny R; Baker NA; McCammon JA
    Biopolymers; 2004 Nov; 75(4):325-37. PubMed ID: 15386271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Viral Capsid Protein Self-Assembly around Short Single-Stranded RNA.
    Comas-Garcia M; Garmann RF; Singaram SW; Ben-Shaul A; Knobler CM; Gelbart WM
    J Phys Chem B; 2014 Jul; 118(27):7510-7519. PubMed ID: 24933579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant Virus-Like Particles for RNA Delivery.
    Ramirez-Acosta K; Loredo-García E; Herrera-Hernandez MM; Cadena-Nava RD
    Methods Mol Biol; 2024; 2822():387-410. PubMed ID: 38907930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.