These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24149009)

  • 41. Microencapsulation of oils using whey protein/gum Arabic coacervates.
    Weinbreck F; Minor M; de Kruif CG
    J Microencapsul; 2004 Sep; 21(6):667-79. PubMed ID: 15762323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of sodium chloride and glucose on acid-induced gelation of heat-denatured ovalbumin.
    Choi SJ; Lee SE; Moon TW
    J Food Sci; 2008 Jun; 73(5):C313-22. PubMed ID: 18576975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.
    Ozturk B; Argin S; Ozilgen M; McClements DJ
    Food Chem; 2015 Dec; 188():256-63. PubMed ID: 26041190
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving the water solubility of Monascus pigments under acidic conditions with gum arabic.
    Jian W; Sun Y; Wu JY
    J Sci Food Agric; 2017 Jul; 97(9):2926-2933. PubMed ID: 27981585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gum arabic and Fe²⁺ synergistically improve the heat and acid stability of norbixin at pH 3.0-5.0.
    Guan Y; Zhong Q
    J Agric Food Chem; 2014 Dec; 62(52):12668-77. PubMed ID: 25479179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic.
    Niu F; Pan W; Su Y; Yang Y
    Food Chem; 2016 Dec; 212():138-45. PubMed ID: 27374517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unraveling the phase behavior of cricket protein isolate and alginate in aqueous solution.
    Razzak MA; Jeong MS; Kim MJ; Cho SJ
    Food Chem; 2022 Nov; 394():133527. PubMed ID: 35749882
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interpolymer complexation of egg white proteins and carrageenan: Phase behavior, thermodynamics and rheological properties.
    Souza CJF; Souza CSF; Heckert Bastos LP; Garcia-Rojas EE
    Int J Biol Macromol; 2018 Apr; 109():467-475. PubMed ID: 29275201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complex coacervation of silk fibroin and hyaluronic acid.
    Malay O; Bayraktar O; Batigün A
    Int J Biol Macromol; 2007 Mar; 40(4):387-93. PubMed ID: 17101174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration.
    Schröder P; Cord-Landwehr S; Schönhoff M; Cramer C
    Biomacromolecules; 2023 Mar; 24(3):1194-1208. PubMed ID: 36779888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving the emulsifying properties of β-lactoglobulin-wild almond gum (Amygdalus scoparia Spach) exudate complexes by heat.
    Golkar A; Nasirpour A; Keramat J
    J Sci Food Agric; 2017 Jan; 97(1):341-349. PubMed ID: 27059005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational modifications of alpha gliadin and globulin proteins upon complex coacervates formation with gum Arabic as studied by Raman microspectroscopy.
    Chourpa I; Ducel V; Richard J; Dubois P; Boury F
    Biomacromolecules; 2006 Sep; 7(9):2616-23. PubMed ID: 16961325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2.
    Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME
    Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of pH, ionic strength, and temperature on self-association and interactions of sodium dodecyl sulfate in the absence and presence of chitosan.
    Thongngam M; McClements DJ
    Langmuir; 2005 Jan; 21(1):79-86. PubMed ID: 15620287
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides.
    Jadhav SB; Bankar SB; Granström T; Ojamo H; Singhal RS; Survase SA
    Appl Microbiol Biotechnol; 2014; 98(14):6307-16. PubMed ID: 24658590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic characterization of acacia gum-beta-lactoglobulin complex coacervation.
    Aberkane L; Jasniewski J; Gaiani C; Scher J; Sanchez C
    Langmuir; 2010 Aug; 26(15):12523-33. PubMed ID: 20586462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elucidation of interactions between gelatin aggregates and hsian-tsao gum in aqueous solutions.
    You G; Niu G; Long H; Zhang C; Liu X
    Food Chem; 2020 Jul; 319():126532. PubMed ID: 32171153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rice proteins - Gum arabic coacervates: Effect of pH and polysaccharide concentration in oil-in-water emulsion stability.
    Igartúa DE; Dichano MC; Morales Huanca MN; Palazolo GG; Cabezas DM
    Food Res Int; 2024 Jul; 188():114399. PubMed ID: 38823854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physicochemical mechanisms of different biopolymers' (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes.
    Dag D; Guner S; Oztop MH
    Int J Biol Macromol; 2019 Oct; 138():473-482. PubMed ID: 31325502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biopolymers phase separation monitored by a plasmonic sensor.
    Akil-Jradi S; Jradi S; Plain J; Bijeon JL; Sanchez C; Bachelot R; Royer P
    Chem Commun (Camb); 2011 Feb; 47(8):2444-6. PubMed ID: 21170438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.