BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24149066)

  • 21. Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight.
    Perron IJ; Pack AI; Veasey S
    Sleep; 2015 Dec; 38(12):1893-903. PubMed ID: 26158893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus.
    Wiater MF; Mukherjee S; Li AJ; Dinh TT; Rooney EM; Simasko SM; Ritter S
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1569-83. PubMed ID: 21880863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sleep responses to light and dark are shaped by early experience.
    Prichard JR; Fahy JL; Obermeyer WH; Behan M; Benca RM
    Behav Neurosci; 2004 Dec; 118(6):1262-73. PubMed ID: 15598135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circadian rhythms of sleep and wakefulness in mice: analysis using long-term automated recording of sleep.
    Richardson GS; Moore-Ede MC; Czeisler CA; Dement WC
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R320-30. PubMed ID: 3838419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep in the blind mole rat Spalax ehrenbergi.
    Tobler I; Deboer T
    Sleep; 2001 Mar; 24(2):147-54. PubMed ID: 11247050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypothalamic prepro-orexin mRNA level is inversely correlated to the non-rapid eye movement sleep level in high-fat diet-induced obese mice.
    Tanno S; Terao A; Okamatsu-Ogura Y; Kimura K
    Obes Res Clin Pract; 2013; 7(4):e251-7. PubMed ID: 24306152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Waking and sleeping following water deprivation in the rat.
    Martelli D; Luppi M; Cerri M; Tupone D; Perez E; Zamboni G; Amici R
    PLoS One; 2012; 7(9):e46116. PubMed ID: 23029406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of hypercaloric diets on glucose homeostasis in the rat: influence of saturated and monounsaturated dietary lipids.
    Hoefel AL; Hansen F; Rosa PD; Assis AM; Silveira SL; Denardin CC; Pettenuzzo L; Augusti PR; Somacal S; Emanuelli T; Perry ML; Wannmacher CM
    Cell Biochem Funct; 2011 Oct; 29(7):569-76. PubMed ID: 21837644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orexin-B-saporin lesions in the lateral hypothalamus enhance photic masking of rapid eye movement sleep in the albino rat.
    Ocampo-Garcés A; Ibáñez F; Perdomo G; Torrealba F
    J Sleep Res; 2011 Mar; 20(1 Pt 1):3-11. PubMed ID: 20626614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic alcohol treatment in rats alters sleep by fragmenting periods of vigilance cycling in the light period with extended wakenings.
    Mukherjee S; Simasko SM
    Behav Brain Res; 2009 Mar; 198(1):113-24. PubMed ID: 19014977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of the sleep-wake rhythm to an 8-hour advance of the light-dark cycle in the rat.
    Sei H; Kiuchi T; Chang HY; Seno H; Sano A; Morita Y
    Chronobiol Int; 1994 Oct; 11(5):293-300. PubMed ID: 7828212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep-wake dynamics under extended light and extended dark conditions in adult zebrafish.
    Sigurgeirsson B; Thornorsteinsson H; Sigmundsdóttir S; Lieder R; Sveinsdóttir HS; Sigurjónsson ÓE; Halldórsson B; Karlsson K
    Behav Brain Res; 2013 Nov; 256():377-90. PubMed ID: 23994128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sleep-wake disturbances in an animal model of chronic cholinergic insufficiency.
    Szymusiak R; McGinty D; Fairchild MD; Jenden DJ
    Brain Res; 1993 Nov; 629(1):141-5. PubMed ID: 7904530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of quercetin on the sleep-wake cycle in rats: involvement of gamma-aminobutyric acid receptor type A in regulation of rapid eye movement sleep.
    Kambe D; Kotani M; Yoshimoto M; Kaku S; Chaki S; Honda K
    Brain Res; 2010 May; 1330():83-8. PubMed ID: 20303338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of elevated ambient temperature on sleep, EEG spectra, and brain temperature in the rat.
    Gao BO; Franken P; Tobler I; Borbély AA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):R1365-73. PubMed ID: 7611510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness.
    Thakkar MM; Engemann SC; Walsh KM; Sahota PK
    Neuroscience; 2008 Jun; 153(4):875-80. PubMed ID: 18440150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-related changes in the sleep-wake cycle of rats infected with Trypanosoma brucei brucei.
    Montmayeur A; Buguet A
    Neurosci Lett; 1994 Feb; 168(1-2):172-4. PubMed ID: 7913215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serotonin control of sleep-wake behavior.
    Monti JM
    Sleep Med Rev; 2011 Aug; 15(4):269-81. PubMed ID: 21459634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of sleep and wakefulness organization in Macaca mulatta during Spacelab flight simulation.
    Balzamo E
    J Gravit Physiol; 1997 Oct; 4(3):35-41. PubMed ID: 11541867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.