These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24149461)

  • 1. Lactate kinetics after intermittent and continuous exercise training.
    Gharbi A; Chamari K; Kallel A; Ahmaidi S; Tabka Z; Abdelkarim Z
    J Sports Sci Med; 2008; 7(2):279-85. PubMed ID: 24149461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance.
    Messonnier L; Freund H; Denis C; Féasson L; Lacour JR
    Int J Sports Med; 2006 Jan; 27(1):60-6. PubMed ID: 16388444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia.
    Messonnier L; Freund H; Féasson L; Prieur F; Castells J; Denis C; Linossier MT; Geyssant A; Lacour JR
    Eur J Appl Physiol; 2001 May; 84(5):403-12. PubMed ID: 11417427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time limit and V̇O
    Almeida TAF; Massini DA; Silva Júnior OT; Venditti Júnior R; Espada MAC; Macedo AG; Reis JF; Alves FB; Pessôa Filho DM
    Front Physiol; 2022; 13():982874. PubMed ID: 36246138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training effects on endurance capacity in maximal intermittent exercise: comparison between continuous and interval training.
    Tanisho K; Hirakawa K
    J Strength Cond Res; 2009 Nov; 23(8):2405-10. PubMed ID: 19826281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake.
    Messonnier L; Geyssant A; Hintzy F; Lacour JR
    Eur J Appl Physiol; 2004 Aug; 92(4-5):470-6. PubMed ID: 15138836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle MCT4 Content Is Correlated with the Lactate Removal Ability during Recovery Following All-Out Supramaximal Exercise in Highly-Trained Rowers.
    Maciejewski H; Bourdin M; Féasson L; Dubouchaud H; Denis C; Freund H; Messonnier LA
    Front Physiol; 2016; 7():223. PubMed ID: 27375499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximal lactate steady-state independent of recovery period during intermittent protocol.
    Barbosa LF; de Souza MR; Caritá RA; Caputo F; Denadai BS; Greco CC
    J Strength Cond Res; 2011 Dec; 25(12):3385-90. PubMed ID: 22076084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood lactate response to overtraining in male endurance athletes.
    Bosquet L; Léger L; Legros P
    Eur J Appl Physiol; 2001; 84(1-2):107-14. PubMed ID: 11394238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate recovery kinetics in response to high-intensity exercises.
    Chatel B; Bret C; Edouard P; Oullion R; Freund H; Messonnier LA
    Eur J Appl Physiol; 2016 Aug; 116(8):1455-65. PubMed ID: 27364321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between aerobic fitness and recovery from high intensity intermittent exercise.
    Tomlin DL; Wenger HA
    Sports Med; 2001; 31(1):1-11. PubMed ID: 11219498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of endurance training on blood lactate clearance after maximal exercise.
    Fukuba Y; Walsh ML; Morton RH; Cameron BJ; Kenny CT; Banister EW
    J Sports Sci; 1999 Mar; 17(3):239-48. PubMed ID: 10362391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniqueness of interval and continuous training at the same maintained exercise intensity.
    Gorostiaga EM; Walter CB; Foster C; Hickson RC
    Eur J Appl Physiol Occup Physiol; 1991; 63(2):101-7. PubMed ID: 1748098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of combined supervised intermittent aerobic, muscle strength and home-based walking training programs on cardiorespiratory responses in women with breast cancer.
    Hiraoui M; Al-Haddabi B; Gmada N; Doutrellot PL; Mezlini A; Ahmaidi S
    Bull Cancer; 2019 Jun; 106(6):527-537. PubMed ID: 31122656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players.
    Buchheit M; Al Haddad H; Millet GP; Lepretre PM; Newton M; Ahmaidi S
    J Strength Cond Res; 2009 Jan; 23(1):93-100. PubMed ID: 19057401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate of decline in blood lactate after cycling exercise in endurance-trained and -untrained subjects.
    Bassett DR; Merrill PW; Nagle FJ; Agre JC; Sampedro R
    J Appl Physiol (1985); 1991 Apr; 70(4):1816-20. PubMed ID: 2055859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex Differences in High-Intensity Interval Training-Are HIIT Protocols Interchangeable Between Females and Males?
    Schmitz B; Niehues H; Thorwesten L; Klose A; Krüger M; Brand SM
    Front Physiol; 2020; 11():38. PubMed ID: 32063866
    [No Abstract]   [Full Text] [Related]  

  • 18. Intermittent versus Continuous Incremental Field Tests: Are Maximal Variables Interchangeable?
    Carminatti LJ; Possamai CA; de Moraes M; da Silva JF; de Lucas RD; Dittrich N; Guglielmo LG
    J Sports Sci Med; 2013; 12(1):165-70. PubMed ID: 24149741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood lactate concentration following intermittent and continuous cycling tests of anaerobic capacity.
    Koziris LP; Montgomery DL
    Eur J Appl Physiol Occup Physiol; 1991; 63(3-4):273-7. PubMed ID: 1761020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in Lactate, Ammonia, and Hypoxanthine Concentrations in a 1-Year Training Cycle in Highly Trained Athletes: Applying Biomarkers as Tools to Assess Training Status.
    Włodarczyk M; Kusy K; Słomińska E; Krasiński Z; Zieliński J
    J Strength Cond Res; 2020 Feb; 34(2):355-364. PubMed ID: 31469767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.