These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24149605)

  • 1. Post-season detraining effects on physiological and performance parameters in top-level kayakers: comparison of two recovery strategies.
    García-Pallarés J; Carrasco L; Díaz A; Sánchez-Medina L
    J Sports Sci Med; 2009; 8(4):622-8. PubMed ID: 24149605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance changes in world-class kayakers following two different training periodization models.
    García-Pallarés J; García-Fernández M; Sánchez-Medina L; Izquierdo M
    Eur J Appl Physiol; 2010 Sep; 110(1):99-107. PubMed ID: 20414669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle.
    García-Pallarés J; Sánchez-Medina L; Carrasco L; Díaz A; Izquierdo M
    Eur J Appl Physiol; 2009 Jul; 106(4):629-38. PubMed ID: 19396614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological effects of tapering and detraining in world-class kayakers.
    García-Pallarés J; Sánchez-Medina L; Pérez CE; Izquierdo-Gabarren M; Izquierdo M
    Med Sci Sports Exerc; 2010 Jun; 42(6):1209-14. PubMed ID: 19997013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training.
    Neufer PD
    Sports Med; 1989 Nov; 8(5):302-20. PubMed ID: 2692122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of cardiorespiratory fitness, bio-motor abilities, and body composition indicators among sprint kayakers of different age groups and expertise levels.
    Wang X; Zhao L
    Front Physiol; 2023; 14():1259152. PubMed ID: 37719468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological Adaptations to High-Intensity Interval and Continuous Training in Kayak Athletes.
    Papandreou A; Philippou A; Zacharogiannis E; Maridaki M
    J Strength Cond Res; 2020 Aug; 34(8):2258-2266. PubMed ID: 29952869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a New Form of Resistance-Type High-Intensity Interval Training on Cardiac Structure, Hemodynamics, and Physiological and Performance Adaptations in Well-Trained Kayak Sprint Athletes.
    Sheykhlouvand M; Arazi H; Astorino TA; Suzuki K
    Front Physiol; 2022; 13():850768. PubMed ID: 35360225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detraining: loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus.
    Mujika I; Padilla S
    Sports Med; 2000 Sep; 30(3):145-54. PubMed ID: 10999420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiorespiratory and metabolic consequences of detraining in endurance athletes.
    Barbieri A; Fuk A; Gallo G; Gotti D; Meloni A; La Torre A; Filipas L; Codella R
    Front Physiol; 2023; 14():1334766. PubMed ID: 38344385
    [No Abstract]   [Full Text] [Related]  

  • 11. Physiological characteristics of well-trained junior sprint kayak athletes.
    Borges TO; Dascombe B; Bullock N; Coutts AJ
    Int J Sports Physiol Perform; 2015 Jul; 10(5):593-9. PubMed ID: 25473923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus.
    Mujika I; Padilla S
    Sports Med; 2000 Aug; 30(2):79-87. PubMed ID: 10966148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolic demands of kayaking: a review.
    Michael JS; Rooney KB; Smith R
    J Sports Sci Med; 2008 Mar; 7(1):1-7. PubMed ID: 24150127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Short- and Long-Term Detraining on Maximal Oxygen Uptake in Athletes: A Systematic Review and Meta-Analysis.
    Zheng J; Pan T; Jiang Y; Shen Y
    Biomed Res Int; 2022; 2022():2130993. PubMed ID: 36017396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes.
    Liao YH; Sung YC; Chou CC; Chen CY
    PLoS One; 2016; 11(7):e0160167. PubMed ID: 27463519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximal oxygen uptake and power of lower limbs during a competitive season in triathletes.
    Galy O; Manetta J; Coste O; Maimoun L; Chamari K; Hue O
    Scand J Med Sci Sports; 2003 Jun; 13(3):185-93. PubMed ID: 12753492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gross efficiency and energy expenditure in kayak ergometer exercise.
    Gomes BB; Mourão L; Massart A; Figueiredo P; Vilas-Boas JP; Santos AM; Fernandes RJ
    Int J Sports Med; 2012 Aug; 33(8):654-60. PubMed ID: 22538549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Simulated 1,000 m Kayak Ergometer Performance in Young Athletes.
    Coelho AB; Nakamura FY; Morgado MC; Alves F; Di Baldassarre A; Flatt A; Rama L
    Front Public Health; 2020; 8():526477. PubMed ID: 33553080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Anthropometric and Performance Parameters in High-Level Endurance Athletes during a Sports Season.
    Alves J; Barrientos G; Toro V; Sánchez E; Muñoz D; Maynar M
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33803383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Including Sprints in One Weekly Low-Intensity Training Session During the Transition Period of Elite Cyclists.
    Almquist NW; Løvlien I; Byrkjedal PT; Spencer M; Kristoffersen M; Skovereng K; Sandbakk Ø; Rønnestad BR
    Front Physiol; 2020; 11():1000. PubMed ID: 33041839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.