These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2415000)

  • 1. Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin.
    Tang J; Abramcheck FJ; Van Driessche W; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C421-9. PubMed ID: 2415000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270.
    Abramcheck FJ; Van Driessche W; Helman SI
    J Gen Physiol; 1985 Apr; 85(4):555-82. PubMed ID: 2409219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of basolateral ouabain, amphotericin B, cyanide and potassium on amiloride noise during voltage clamp of Rana pipiens skin support sodium-amiloride competition.
    Hoshiko T; Grossman RA; Machlup S
    Biochim Biophys Acta; 1988 Jul; 942(1):186-98. PubMed ID: 2454664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis.
    Helman SI; Cox TC; Van Driessche W
    J Gen Physiol; 1983 Aug; 82(2):201-20. PubMed ID: 6311938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ouabain and furosemide on basolateral membrane Na efflux of frog skin.
    Cox TC; Helman SI
    Am J Physiol; 1983 Sep; 245(3):F312-21. PubMed ID: 6604462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell K activity in frog skin in the presence and absence of cell current.
    García-Díaz JF; Baxendale LM; Klemperer G; Essig A
    J Membr Biol; 1985; 85(2):143-58. PubMed ID: 3874286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Net basolateral potassium flux and short-circuit current in ouabain-treated frog skin.
    Cox TC; Woods RE
    Am J Physiol; 1990 Nov; 259(5 Pt 2):R936-42. PubMed ID: 2240277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+ transport and capacitance of the basolateral membrane of the larval frog skin.
    Hillyard SD; Cantiello HF; Van Driessche W
    Am J Physiol; 1997 Dec; 273(6):C1995-2001. PubMed ID: 9435506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amiloride-sensitive Na+ transport across cultured renal (A6) epithelium: evidence for large currents and high Na:K selectivity.
    Wills NK; Millinoff LP
    Pflugers Arch; 1990 Jul; 416(5):481-92. PubMed ID: 2172913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH modulates cAMP-induced increase in Na+ transport across frog skin epithelium.
    Lyall V; Biber TU
    Biochim Biophys Acta; 1995 Nov; 1240(1):65-74. PubMed ID: 7495850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of serosal Cl on transport properties and cation activities in frog skin.
    Klemperer G; Essig A
    J Membr Biol; 1988 Dec; 106(2):107-18. PubMed ID: 3265732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current-noise analysis of Na absorption in the embryonic coprodeum: stimulation by aldosterone and thyroxine.
    Clauss W; Hoffmann B; Krattenmacher R; Van Driessche W
    Am J Physiol; 1993 Nov; 265(5 Pt 2):R1100-8. PubMed ID: 7694510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin.
    Stoddard JS; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F662-71. PubMed ID: 3877468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex response of epithelial cells to inhibition of Na+ transport by amiloride.
    Fisher RS; Lockard JW
    Am J Physiol; 1988 Feb; 254(2 Pt 1):C297-303. PubMed ID: 2450465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockage of Na+ currents through poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder.
    Van Driessche W; Desmedt L; Simaels J
    Pflugers Arch; 1991 Apr; 418(3):193-203. PubMed ID: 1649987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of phorbol ester (PMA) on blocker-sensitive ENaCs of frog skin and A6 epithelia.
    Els WJ; Liu X; Helman SI
    Am J Physiol; 1998 Jul; 275(1):C120-9. PubMed ID: 9688842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apical sodium entry in split frog skin: current-voltage relationship.
    DeLong J; Civan MM
    J Membr Biol; 1984; 82(1):25-40. PubMed ID: 6334163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basolateral membrane potential and conductance in frog skin exposed to high serosal potassium.
    Klemperer G; Garcia-Diaz JF; Nagel W; Essig A
    J Membr Biol; 1986; 90(1):89-96. PubMed ID: 3486296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.