BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24150109)

  • 1. Tau proteins harboring neurodegeneration-linked mutations impair kinesin translocation in vitro.
    Yu D; LaPointe NE; Guzman E; Pessino V; Wilson L; Feinstein SC; Valentine MT
    J Alzheimers Dis; 2014; 39(2):301-14. PubMed ID: 24150109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tau isoform-specific modulation of kinesin-driven microtubule gliding rates and trajectories as determined with tau-stabilized microtubules.
    Peck A; Sargin ME; LaPointe NE; Rose K; Manjunath BS; Feinstein SC; Wilson L
    Cytoskeleton (Hoboken); 2011 Jan; 68(1):44-55. PubMed ID: 21162159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip microtubule gliding assay for parallel measurement of tau protein species.
    Subramaniyan Parimalam S; Tarhan MC; Karsten SL; Fujita H; Shintaku H; Kotera H; Yokokawa R
    Lab Chip; 2016 Apr; 16(9):1691-7. PubMed ID: 27056640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport.
    McVicker DP; Chrin LR; Berger CL
    J Biol Chem; 2011 Dec; 286(50):42873-80. PubMed ID: 22039058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tau isoform-specific stabilization of intermediate states during microtubule assembly and disassembly.
    Best RL; LaPointe NE; Liang J; Ruan K; Shade MF; Wilson L; Feinstein SC
    J Biol Chem; 2019 Aug; 294(33):12265-12280. PubMed ID: 31266806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Missense point mutations of tau to segregate with FTDP-17 exhibit site-specific effects on microtubule structure in COS cells: a novel action of R406W mutation.
    Sahara N; Tomiyama T; Mori H
    J Neurosci Res; 2000 May; 60(3):380-7. PubMed ID: 10797541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tau proteins bind to kinesin and modulate its activation by microtubules.
    Jancsik V; Filliol D; Rendon A
    Neurobiology (Bp); 1996; 4(4):417-29. PubMed ID: 9200133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tau-isoform dependent enhancement of taxol mobility through microtubules.
    Park H; Kim M; Fygenson DK
    Arch Biochem Biophys; 2008 Oct; 478(1):119-26. PubMed ID: 18691553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions.
    DeTure M; Ko LW; Yen S; Nacharaju P; Easson C; Lewis J; van Slegtenhorst M; Hutton M; Yen SH
    Brain Res; 2000 Jan; 853(1):5-14. PubMed ID: 10627302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners. Implications for neurodegeneration.
    Levy SF; Leboeuf AC; Massie MR; Jordan MA; Wilson L; Feinstein SC
    J Biol Chem; 2005 Apr; 280(14):13520-8. PubMed ID: 15671021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTDP-17 Mutations Alter the Aggregation and Microtubule Stabilization Propensity of Tau in an Isoform-Specific Fashion.
    Mutreja Y; Combs B; Gamblin TC
    Biochemistry; 2019 Feb; 58(6):742-754. PubMed ID: 30562452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and functional properties of epothilone-stabilized microtubules.
    Yu D; Pessino V; Kuei S; Valentine MT
    Cytoskeleton (Hoboken); 2013 Feb; 70(2):74-84. PubMed ID: 23135951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol.
    Kar S; Fan J; Smith MJ; Goedert M; Amos LA
    EMBO J; 2003 Jan; 22(1):70-7. PubMed ID: 12505985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease.
    Goode BL; Chau M; Denis PE; Feinstein SC
    J Biol Chem; 2000 Dec; 275(49):38182-9. PubMed ID: 10984497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosensing MAPs as "roadblocks": kinesin-based functional analysis of tau protein isoforms and mutants using suspended microtubules (sMTs).
    Tarhan MC; Orazov Y; Yokokawa R; Karsten SL; Fujita H
    Lab Chip; 2013 Aug; 13(16):3217-24. PubMed ID: 23778963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic model for kinesin-mediated long-range transport and its local traffic jam caused by tau proteins.
    Nam W; Epureanu BI
    Phys Rev E; 2017 Jan; 95(1-1):012405. PubMed ID: 28208320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of detyrosinated microtubules and Golgi fragmentation are linked to tau-induced degeneration in astrocytes.
    Yoshiyama Y; Zhang B; Bruce J; Trojanowski JQ; Lee VM
    J Neurosci; 2003 Nov; 23(33):10662-71. PubMed ID: 14627651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells.
    Vogelsberg-Ragaglia V; Bruce J; Richter-Landsberg C; Zhang B; Hong M; Trojanowski JQ; Lee VM
    Mol Biol Cell; 2000 Dec; 11(12):4093-104. PubMed ID: 11102510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons.
    Hammond JW; Huang CF; Kaech S; Jacobson C; Banker G; Verhey KJ
    Mol Biol Cell; 2010 Feb; 21(4):572-83. PubMed ID: 20032309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinesin and tau bind to distinct sites on microtubules.
    Marya PK; Syed Z; Fraylich PE; Eagles PA
    J Cell Sci; 1994 Jan; 107 ( Pt 1)():339-44. PubMed ID: 7909814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.