BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 24150233)

  • 1. Altered microenvironment promotes progression of preinvasive breast cancer: myoepithelial expression of αvβ6 integrin in DCIS identifies high-risk patients and predicts recurrence.
    Allen MD; Thomas GJ; Clark S; Dawoud MM; Vallath S; Payne SJ; Gomm JJ; Dreger SA; Dickinson S; Edwards DR; Pennington CJ; Sestak I; Cuzick J; Marshall JF; Hart IR; Jones JL
    Clin Cancer Res; 2014 Jan; 20(2):344-57. PubMed ID: 24150233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. αvβ6 Expression in myoepithelial cells: a novel marker for predicting DCIS progression with therapeutic potential.
    Allen MD; Marshall JF; Jones JL
    Cancer Res; 2014 Nov; 74(21):5942-7. PubMed ID: 25320004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma
    Lo PK; Zhang Y; Yao Y; Wolfson B; Yu J; Han SY; Duru N; Zhou Q
    J Biol Chem; 2017 Jul; 292(27):11466-11484. PubMed ID: 28512126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function.
    Sarper M; Allen MD; Gomm J; Haywood L; Decock J; Thirkettle S; Ustaoglu A; Sarker SJ; Marshall J; Edwards DR; Jones JL
    Breast Cancer Res; 2017 Mar; 19(1):33. PubMed ID: 28330493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion.
    Duivenvoorden HM; Rautela J; Edgington-Mitchell LE; Spurling A; Greening DW; Nowell CJ; Molloy TJ; Robbins E; Brockwell NK; Lee CS; Chen M; Holliday A; Selinger CI; Hu M; Britt KL; Stroud DA; Bogyo M; Möller A; Polyak K; Sloane BF; O'Toole SA; Parker BS
    J Pathol; 2017 Dec; 243(4):496-509. PubMed ID: 29086922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β1-Integrin via NF-κB signaling is essential for acquisition of invasiveness in a model of radiation treated in situ breast cancer.
    Nam JM; Ahmed KM; Costes S; Zhang H; Onodera Y; Olshen AB; Hatanaka KC; Kinoshita R; Ishikawa M; Sabe H; Shirato H; Park CC
    Breast Cancer Res; 2013; 15(4):R60. PubMed ID: 23883667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucocorticoids promote transition of ductal carcinoma in situ to invasive ductal carcinoma by inducing myoepithelial cell apoptosis.
    Zubeldia-Plazaola A; Recalde-Percaz L; Moragas N; Alcaraz M; Chen X; Mancino M; Fernández-Nogueira P; Prats de Puig M; Guzman F; Noguera-Castells A; López-Plana A; Enreig E; Carbó N; Almendro V; Gascón P; Bragado P; Fuster G
    Breast Cancer Res; 2018 Jul; 20(1):65. PubMed ID: 29973218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo.
    Khurana A; McKean H; Kim H; Kim SH; mcguire J; Roberts LR; Goetz MP; Shridhar V
    Breast Cancer Res; 2012 Mar; 14(2):R43. PubMed ID: 22410125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TNFAIP3 is required for FGFR1 activation-promoted proliferation and tumorigenesis of premalignant DCIS.COM human mammary epithelial cells.
    Yang M; Yu X; Li X; Luo B; Yang W; Lin Y; Li D; Gan Z; Xu J; He T
    Breast Cancer Res; 2018 Aug; 20(1):97. PubMed ID: 30111373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Everolimus Inhibits the Progression of Ductal Carcinoma
    Chen G; Ding XF; Pressley K; Bouamar H; Wang B; Zheng G; Broome LE; Nazarullah A; Brenner AJ; Kaklamani V; Jatoi I; Sun LZ
    Clin Cancer Res; 2020 Mar; 26(6):1486-1496. PubMed ID: 31871301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of in situ to invasive breast carcinoma transition.
    Hu M; Yao J; Carroll DK; Weremowicz S; Chen H; Carrasco D; Richardson A; Violette S; Nikolskaya T; Nikolsky Y; Bauerlein EL; Hahn WC; Gelman RS; Allred C; Bissell MJ; Schnitt S; Polyak K
    Cancer Cell; 2008 May; 13(5):394-406. PubMed ID: 18455123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy.
    Reader CS; Vallath S; Steele CW; Haider S; Brentnall A; Desai A; Moore KM; Jamieson NB; Chang D; Bailey P; Scarpa A; Lawlor R; Chelala C; Keyse SM; Biankin A; Morton JP; Evans TJ; Barry ST; Sansom OJ; Kocher HM; Marshall JF
    J Pathol; 2019 Nov; 249(3):332-342. PubMed ID: 31259422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ductal carcinoma in situ of the breast: the importance of morphologic and molecular interactions.
    Mardekian SK; Bombonati A; Palazzo JP
    Hum Pathol; 2016 Mar; 49():114-23. PubMed ID: 26826418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion.
    Elsarraj HS; Hong Y; Valdez KE; Michaels W; Hook M; Smith WP; Chien J; Herschkowitz JI; Troester MA; Beck M; Inciardi M; Gatewood J; May L; Cusick T; McGinness M; Ricci L; Fan F; Tawfik O; Marks JR; Knapp JR; Yeh HW; Thomas P; Carrasco DR; Fields TA; Godwin AK; Behbod F
    Breast Cancer Res; 2015 Sep; 17():128. PubMed ID: 26384318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse-INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy.
    Hong Y; Limback D; Elsarraj HS; Harper H; Haines H; Hansford H; Ricci M; Kaufman C; Wedlock E; Xu M; Zhang J; May L; Cusick T; Inciardi M; Redick M; Gatewood J; Winblad O; Aripoli A; Huppe A; Balanoff C; Wagner JL; Amin AL; Larson KE; Ricci L; Tawfik O; Razek H; Meierotto RO; Madan R; Godwin AK; Thompson J; Hilsenbeck SG; Futreal A; Thompson A; Hwang ES; Fan F; Behbod F;
    J Pathol; 2022 Feb; 256(2):186-201. PubMed ID: 34714554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression.
    Russell TD; Jindal S; Agunbiade S; Gao D; Troxell M; Borges VF; Schedin P
    Am J Pathol; 2015 Nov; 185(11):3076-89. PubMed ID: 26343330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influenza promotes collagen deposition via αvβ6 integrin-mediated transforming growth factor β activation.
    Jolly L; Stavrou A; Vanderstoken G; Meliopoulos VA; Habgood A; Tatler AL; Porte J; Knox A; Weinreb P; Violette S; Hussell T; Kolb M; Stampfli MR; Schultz-Cherry S; Jenkins G
    J Biol Chem; 2014 Dec; 289(51):35246-63. PubMed ID: 25339175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carcinoma in situ of the female breast. A clinico-pathological, immunohistological, and DNA ploidy study.
    Ottesen GL
    APMIS Suppl; 2003; (108):1-67. PubMed ID: 12874968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulated papillary carcinoma of the breast: a study of invasion associated markers.
    Rakha EA; Tun M; Junainah E; Ellis IO; Green A
    J Clin Pathol; 2012 Aug; 65(8):710-4. PubMed ID: 22554960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2.
    Dutta A; Li J; Lu H; Akech J; Pratap J; Wang T; Zerlanko BJ; FitzGerald TJ; Jiang Z; Birbe R; Wixted J; Violette SM; Stein JL; Stein GS; Lian JB; Languino LR
    Cancer Res; 2014 Mar; 74(5):1598-608. PubMed ID: 24385215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.