These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 24150295)
1. Optical investigation of strong exciton localization in high Al composition AlxGa₁-xN alloys. Fan S; Qin Z; He C; Hou M; Wang X; Shen B; Li W; Wang W; Mao D; Jin P; Yan J; Dong P Opt Express; 2013 Oct; 21(21):24497-503. PubMed ID: 24150295 [TBL] [Abstract][Full Text] [Related]
3. Optical investigation of band-edge structure and built-in electric field of AlGaN/GaN heterostructures by means of thermoreflectance, photoluminescence, and contactless electroreflectance spectroscopy. Ho CH; Lee JW Opt Lett; 2009 Dec; 34(23):3604-6. PubMed ID: 19953134 [TBL] [Abstract][Full Text] [Related]
4. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
5. Effects of composition and temperature on the exciton emission behaviors of Mo(S Chen F; Zhou B; Zhang P; Ye Y; Sun H; Xu L; Zhu L; Jiang K; Gong Y; Hu Z; Chu J Nanotechnology; 2020 Apr; 31(15):155703. PubMed ID: 31860906 [TBL] [Abstract][Full Text] [Related]
6. [Study on photoluminescence spectra of Cd(1-x)Mn(x)Te/CdTe diluted semiconductor superlattices with high Mn compositions]. Chen CJ; Wang XZ; Bellani V; Stella A Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar; 26(3):396-8. PubMed ID: 16830738 [TBL] [Abstract][Full Text] [Related]
7. Signature of anomalous exciton localization in the optical response of self-assembled organic nanotubes. Bloemsma EA; Vlaming SM; Malyshev VA; Knoester J Phys Rev Lett; 2015 Apr; 114(15):156804. PubMed ID: 25933330 [TBL] [Abstract][Full Text] [Related]
8. Optical characterization of a GaAs/In(0.5)(AlxGa(1-x))(0.5)P/GaAs heterostructure cavity by piezoreflectance spectroscopy. Ho CH; Li JH; Lin YS Opt Express; 2007 Oct; 15(21):13886-93. PubMed ID: 19550660 [TBL] [Abstract][Full Text] [Related]
9. Model of hopping excitons in GaInNAs: simulations of sharp lines in micro-photoluminescence spectra and their dependence on the excitation power and temperature. Baranowski M; Latkowska M; Kudrawiec R; Misiewicz J J Phys Condens Matter; 2011 May; 23(20):205804. PubMed ID: 21540495 [TBL] [Abstract][Full Text] [Related]
10. Excitation dependence of steady-state photoluminescence in CdSe nanocrystal films. Babentsov V; Riegler J; Schneider J; Fiederle M; Nann T J Phys Chem B; 2005 Aug; 109(32):15349-54. PubMed ID: 16852947 [TBL] [Abstract][Full Text] [Related]
11. Bound exciton and free exciton states in GaSe thin slab. Wei C; Chen X; Li D; Su H; He H; Dai JF Sci Rep; 2016 Sep; 6():33890. PubMed ID: 27654064 [TBL] [Abstract][Full Text] [Related]
12. Determination of exciton reduced mass and gyromagnetic factor of wurtzite (InGa)As nanowires by photoluminescence spectroscopy under high magnetic fields. De Luca M; Polimeni A; Capizzi M; Meaney AJ; Christianen PC; Maan JK; Mura F; Rubini S; Martelli F ACS Nano; 2013 Dec; 7(12):10717-25. PubMed ID: 24261718 [TBL] [Abstract][Full Text] [Related]
13. Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films. Spano FC; Clark J; Silva C; Friend RH J Chem Phys; 2009 Feb; 130(7):074904. PubMed ID: 19239313 [TBL] [Abstract][Full Text] [Related]
14. Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Arora A; Nogajewski K; Molas M; Koperski M; Potemski M Nanoscale; 2015 Dec; 7(48):20769-75. PubMed ID: 26603094 [TBL] [Abstract][Full Text] [Related]
15. Temperature dependence of exciton diffusion in conjugated polymers. Mikhnenko OV; Cordella F; Sieval AB; Hummelen JC; Blom PW; Loi MA J Phys Chem B; 2008 Sep; 112(37):11601-4. PubMed ID: 18729397 [TBL] [Abstract][Full Text] [Related]