These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 24150295)
21. Excitonic properties of wurtzite InP nanowires grown on silicon substrate. Hadj Alouane MH; Chauvin N; Khmissi H; Naji K; Ilahi B; Maaref H; Patriarche G; Gendry M; Bru-Chevallier C Nanotechnology; 2013 Jan; 24(3):035704. PubMed ID: 23262659 [TBL] [Abstract][Full Text] [Related]
22. Photoluminescence of ZnO nanocrystals embedded in BaF2 matrices by magnetron sputtering. Zang CH; Liu YC; Mu R; Zhao DX; Zhang JY; Ma JG; Lu YM; Yao B; Shen DZ; Fan XW J Nanosci Nanotechnol; 2008 Mar; 8(3):1160-4. PubMed ID: 18468116 [TBL] [Abstract][Full Text] [Related]
23. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer. Ottiger P; Leutwyler S J Chem Phys; 2012 Nov; 137(20):204303. PubMed ID: 23205999 [TBL] [Abstract][Full Text] [Related]
24. Optical properties of GaN-based nanowires containing a single Al(0.14)Ga(0.86)N/GaN quantum disc. Jacopin G; Rigutti L; Teubert J; Julien FH; Furtmayr F; Komninou P; Kehagias T; Eickhoff M; Tchernycheva M Nanotechnology; 2013 Mar; 24(12):125201. PubMed ID: 23459100 [TBL] [Abstract][Full Text] [Related]
25. Growth, structural and optical properties of AlGaN nanowires in the whole composition range. Pierret A; Bougerol C; Murcia-Mascaros S; Cros A; Renevier H; Gayral B; Daudin B Nanotechnology; 2013 Mar; 24(11):115704. PubMed ID: 23455374 [TBL] [Abstract][Full Text] [Related]
26. Electrodynamic and excitonic intertube interactions in semiconducting carbon nanotube aggregates. Crochet JJ; Sau JD; Duque JG; Doorn SK; Cohen ML ACS Nano; 2011 Apr; 5(4):2611-8. PubMed ID: 21391554 [TBL] [Abstract][Full Text] [Related]
27. Microstructure and enhanced exciton-phonon coupling in Fe doped ZnO nanoparticles. Pandiyarajan T; Udayabhaskar R; Karthikeyan B Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():173-8. PubMed ID: 23261610 [TBL] [Abstract][Full Text] [Related]
28. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy. Georgi C; Green AA; Hersam MC; Hartschuh A ACS Nano; 2010 Oct; 4(10):5914-20. PubMed ID: 20857945 [TBL] [Abstract][Full Text] [Related]
29. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range. He C; Wu Q; Wang X; Zhang Y; Yang L; Liu N; Zhao Y; Lu Y; Hu Z ACS Nano; 2011 Feb; 5(2):1291-6. PubMed ID: 21284401 [TBL] [Abstract][Full Text] [Related]
30. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. Kriegel I; Jiang C; Rodríguez-Fernández J; Schaller RD; Talapin DV; da Como E; Feldmann J J Am Chem Soc; 2012 Jan; 134(3):1583-90. PubMed ID: 22148506 [TBL] [Abstract][Full Text] [Related]
31. Picosecond time resolved photoluminescence spectroscopy of a tetracene film on highly oriented pyrolytic graphite: dynamical relaxation, trap emission, and superradiance. Voigt M; Langner A; Schouwink P; Lupton JM; Mahrt RF; Sokolowski M J Chem Phys; 2007 Sep; 127(11):114705. PubMed ID: 17887868 [TBL] [Abstract][Full Text] [Related]
32. Large prolongation of free-exciton photoluminescence decay in diamond by two-photon excitation. Kozák M; Trojánek F; Malý P Opt Lett; 2012 Jun; 37(11):2049-51. PubMed ID: 22660117 [TBL] [Abstract][Full Text] [Related]
33. Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width. Zhong X; Feng Y; Knoll W; Han M J Am Chem Soc; 2003 Nov; 125(44):13559-63. PubMed ID: 14583053 [TBL] [Abstract][Full Text] [Related]
34. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals. Blumling DE; McGill S; Knappenberger KL Nanoscale; 2013 Oct; 5(19):9049-56. PubMed ID: 23945622 [TBL] [Abstract][Full Text] [Related]
35. Thickness-dependent phase transition of AlxGa1-xN thin films on strained GaN. Cai D; Kang J J Phys Chem B; 2006 Jun; 110(21):10396-400. PubMed ID: 16722745 [TBL] [Abstract][Full Text] [Related]
36. Unambiguous identification of recombination lines in single zinc-blende ZnSe nanowires in direct relation to their microstructure. Saxena A; Pan Q; Ruda HE Nanotechnology; 2013 Mar; 24(10):105701. PubMed ID: 23416878 [TBL] [Abstract][Full Text] [Related]
37. [Structural and optical characterization of ZnO thin films grown by plasma-assisted molecular beam epitaxy]. Lan ZL; Zhang XQ; Yang GW; Sun J; Liu FJ; Huang HQ; Zhang R; Yin PG; Guo L; Song YC Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Feb; 28(2):253-5. PubMed ID: 18478997 [TBL] [Abstract][Full Text] [Related]
38. Photoluminescence study of low density InAs quantum clusters grown by molecular beam epitaxy. Yu Y; Li MF; He JF; Zhu Y; Wang LJ; Ni HQ; He ZH; Niu ZC Nanotechnology; 2012 Feb; 23(6):065706. PubMed ID: 22248719 [TBL] [Abstract][Full Text] [Related]
39. T-shaped GaAs quantum-wire lasers and the exciton Mott transition. Yoshita M; Liu SM; Okano M; Hayamizu Y; Akiyama H; Pfeiffer LN; West KW J Phys Condens Matter; 2007 Jul; 19(29):295217. PubMed ID: 21483069 [TBL] [Abstract][Full Text] [Related]
40. Spatially Resolved Thermodynamics of the Partially Ionized Exciton Gas in GaAs. Bieker S; Henn T; Kiessling T; Ossau W; Molenkamp LW Phys Rev Lett; 2015 Jun; 114(22):227402. PubMed ID: 26196644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]