BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24150329)

  • 1. Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.
    Gómez-Díaz JS; Esquius-Morote M; Perruisseau-Carrier J
    Opt Express; 2013 Oct; 21(21):24856-72. PubMed ID: 24150329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual Otto excitation dynamics and enhanced coupling of light to TE plasmons in graphene.
    Mason DR; Menabde SG; Park N
    Opt Express; 2014 Jan; 22(1):847-58. PubMed ID: 24515044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling light into graphene plasmons through surface acoustic waves.
    Schiefele J; Pedrós J; Sols F; Calle F; Guinea F
    Phys Rev Lett; 2013 Dec; 111(23):237405. PubMed ID: 24476304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon excitation on flat graphene by s-polarized beams using four-wave mixing.
    Tao J; Dong Z; Yang JK; Wang QJ
    Opt Express; 2015 Mar; 23(6):7809-19. PubMed ID: 25837120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical Detection of Single Graphene Plasmons.
    Yu R; García de Abajo FJ
    ACS Nano; 2016 Aug; 10(8):8045-53. PubMed ID: 27472914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband absorption using all-graphene grating-coupled nanoparticles on a reflector.
    Raad SH; Atlasbaf Z; Zapata-Rodríguez CJ
    Sci Rep; 2020 Nov; 10(1):19060. PubMed ID: 33149162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating.
    Matthaiakakis N; Mizuta H; Charlton MD
    Sci Rep; 2016 Jun; 6():27550. PubMed ID: 27278301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous emission in paired graphene plasmonic waveguide structures.
    Zhang L; Fu X; Zhang M; Yang J
    Opt Express; 2013 Apr; 21(7):7897-907. PubMed ID: 23571881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns.
    Alonso-González P; Nikitin AY; Golmar F; Centeno A; Pesquera A; Vélez S; Chen J; Navickaite G; Koppens F; Zurutuza A; Casanova F; Hueso LE; Hillenbrand R
    Science; 2014 Jun; 344(6190):1369-73. PubMed ID: 24855026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene plasmons isolator based on non-reciprocal coupling.
    Zhu B; Ren G; Gao Y; Wu B; Wang Q; Wan C; Jian S
    Opt Express; 2015 Jun; 23(12):16071-83. PubMed ID: 26193581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple excitation of confined graphene plasmons by single free electrons.
    Garcıía de Abajo FJ
    ACS Nano; 2013 Dec; 7(12):11409-19. PubMed ID: 24219514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime.
    Huang D; Gumbs G; Roslyak O
    Appl Opt; 2013 Feb; 52(4):755-69. PubMed ID: 23385917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional excitation of graphene surface plasmons.
    Liu F; Qian C; Chong YD
    Opt Express; 2015 Feb; 23(3):2383-91. PubMed ID: 25836106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies.
    Du L; Tang D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):691-5. PubMed ID: 24695129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-reciprocal magnetoplasmon graphene coupler.
    Chamanara N; Sounas D; Caloz C
    Opt Express; 2013 May; 21(9):11248-56. PubMed ID: 23669982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma excitations in graphene: their spectral intensity and temperature dependence in magnetic field.
    Wu JY; Chen SC; Roslyak O; Gumbs G; Lin MF
    ACS Nano; 2011 Feb; 5(2):1026-32. PubMed ID: 21204567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy.
    Lee IH; Yoo D; Avouris P; Low T; Oh SH
    Nat Nanotechnol; 2019 Apr; 14(4):313-319. PubMed ID: 30742134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons.
    Xia SX; Zhai X; Wang LL; Lin Q; Wen SC
    Opt Express; 2016 Jan; 24(1):427-36. PubMed ID: 26832273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy.
    Alonso-González P; Nikitin AY; Gao Y; Woessner A; Lundeberg MB; Principi A; Forcellini N; Yan W; Vélez S; Huber AJ; Watanabe K; Taniguchi T; Casanova F; Hueso LE; Polini M; Hone J; Koppens FH; Hillenbrand R
    Nat Nanotechnol; 2017 Jan; 12(1):31-35. PubMed ID: 27775727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.
    Sum KS; Pan J
    J Acoust Soc Am; 2007 Jul; 122(1):333-44. PubMed ID: 17614493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.