These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24150385)

  • 41. Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides.
    Zhang S; Xu H
    ACS Nano; 2012 Sep; 6(9):8128-35. PubMed ID: 22892010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A stretch-tunable plasmonic structure with a polarization-dependent response.
    Zhu X; Xiao S; Shi L; Liu X; Zi J; Hansen O; Mortensen NA
    Opt Express; 2012 Feb; 20(5):5237-42. PubMed ID: 22418330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2013 May; 21(10):12699-712. PubMed ID: 23736489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silicon based plasmonic coupler.
    Thomas R; Ikonic Z; Kelsall RW
    Opt Express; 2012 Sep; 20(19):21520-31. PubMed ID: 23037272
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Active terahertz metamaterial devices.
    Chen HT; Padilla WJ; Zide JM; Gossard AC; Taylor AJ; Averitt RD
    Nature; 2006 Nov; 444(7119):597-600. PubMed ID: 17136089
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Switching transient analysis of a metal/ferroelectric/semiconductor switch diode with high speed response to infrared light.
    Chen FY; Ho JJ; Fang YK; Shu CY; Hsu CY; Chen JR; Ju MS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):502-10. PubMed ID: 18238450
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increase in terahertz radiation power of plasmonic photoconductive antennas by embedding buried three-stepped rods in electrodes.
    Khorshidi M; Zafari S; Dadashzadeh G
    Opt Express; 2019 Aug; 27(16):22327-22338. PubMed ID: 31510528
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Switching terahertz wave with grating-coupled Kretschmann configuration.
    Jiu-Sheng L
    Opt Express; 2017 Aug; 25(16):19422-19428. PubMed ID: 29041136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.
    Lee DJ; Yim HD; Lee SG; O BH
    Opt Express; 2011 Oct; 19(21):19895-900. PubMed ID: 21996997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles.
    Tan CL; Karar A; Alameh K; Lee YT
    Opt Express; 2013 Jan; 21(2):1713-25. PubMed ID: 23389156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reconfigurable plasmonic devices using liquid metals.
    Wang J; Liu S; Nahata A
    Opt Express; 2012 May; 20(11):12119-26. PubMed ID: 22714198
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects.
    Yu CC; Ho KH; Chen HL; Chuang SY; Tseng SC; Su WF
    Biosens Bioelectron; 2012 Mar; 33(1):267-73. PubMed ID: 22326893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium.
    Dai D; Shi Y; He S; Wosinski L; Thylen L
    Opt Express; 2011 Jul; 19(14):12925-36. PubMed ID: 21747445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gallium-nitride-based plasmonic multilayer operating at 1.55 μm.
    Stolz A; Considine L; Faci S; Dogheche E; Tripon-Canseliet C; Loiseaux B; Pavlidis D; Decoster D; Chazelas J
    Opt Lett; 2012 Aug; 37(15):3039-41. PubMed ID: 22859078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.
    DiPippo W; Lee BJ; Park K
    Opt Express; 2010 Aug; 18(18):19396-406. PubMed ID: 20940835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A hybrid analysis method for plasmonic enhanced terahertz photomixer sources.
    Jafarlou S; Neshat M; Safavi-Naeini S
    Opt Express; 2013 May; 21(9):11115-24. PubMed ID: 23669968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons.
    Hu B; Wang QJ; Zhang Y
    Opt Express; 2012 Apr; 20(9):10071-6. PubMed ID: 22535097
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor.
    Sannomiya T; Balmer TE; Hafner C; Heuberger M; Vörös J
    Rev Sci Instrum; 2010 May; 81(5):053102. PubMed ID: 20515119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides.
    Dai D; Shi Y; He S; Wosinski L; Thylen L
    Opt Express; 2011 Nov; 19(24):23671-82. PubMed ID: 22109393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.