These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24150393)

  • 1. Near-field recording on phase-change nanoparticles and reflective reproduction from nanoantenna utilizing plasmonic resonance for high-density optical memory.
    Shiono T; Matsuzaki K; Furumiya S
    Opt Express; 2013 Oct; 21(21):25532-43. PubMed ID: 24150393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.
    Kim J; Roh YG; Cheon S; Kim UJ; Hwang SW; Park Y; Lee CW
    Sci Rep; 2015 Jul; 5():11832. PubMed ID: 26135115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic nanoantennas on VO
    Gupta N; Savaliya PB; Dhawan A
    Opt Express; 2020 Sep; 28(19):27476-27494. PubMed ID: 32988041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer.
    Trivedi R; Thomas A; Dhawan A
    Opt Express; 2014 Aug; 22(17):19970-89. PubMed ID: 25321207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field excitation of nanoantenna resonance.
    Bakker RM; Boltasseva A; Liu Z; Pedersen RH; Gresillon S; Kildishev AV; Drachev VP; Shalaev VM
    Opt Express; 2007 Oct; 15(21):13682-8. PubMed ID: 19550639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.
    Savaliya PB; Thomas A; Dua R; Dhawan A
    Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional plasmonic film for recording near-field optical intensity.
    Roxworthy BJ; Bhuiya AM; Inavalli VV; Chen H; Toussaint KC
    Nano Lett; 2014 Aug; 14(8):4687-93. PubMed ID: 25020242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping magnetic near-field distributions of plasmonic nanoantennas.
    Denkova D; Verellen N; Silhanek AV; Valev VK; Van Dorpe P; Moshchalkov VV
    ACS Nano; 2013 Apr; 7(4):3168-76. PubMed ID: 23464670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High density recording by superresolution in an optical disk memory system.
    Yamanaka Y; Hirose Y; Fujii H; Kubota K
    Appl Opt; 1990 Jul; 29(20):3046-51. PubMed ID: 20567374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional far-field response of a spherical nanoantenna.
    Liu YG; Li Y; Sha WE
    Opt Lett; 2011 Jun; 36(11):2146-8. PubMed ID: 21633477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy.
    Lu G; Liu J; Zhang T; Li W; Hou L; Luo C; Lei F; Manfait M; Gong Q
    Nanoscale; 2012 Jun; 4(11):3359-64. PubMed ID: 22569965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation.
    Navarro-Cia M; Maier SA
    ACS Nano; 2012 Apr; 6(4):3537-44. PubMed ID: 22429069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
    Hung YT; Huang CB; Huang JS
    Opt Express; 2012 Aug; 20(18):20342-55. PubMed ID: 23037085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoantenna effect dependent on the center structure of Bull's eye-type plasmonic chip.
    Nagasue T; Shinohara T; Hasegawa S; Imura K; Tawa K
    Opt Express; 2022 Feb; 30(5):7526-7538. PubMed ID: 35299513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cascaded four-wave mixing in tapered plasmonic nanoantenna.
    Maksymov IS; Miroshnichenko AE; Kivshar YS
    Opt Lett; 2013 Jan; 38(1):79-81. PubMed ID: 23282844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid.
    Kaplan A; Tomes M; Carmon T; Kozlov M; Cohen O; Bartal G; Schwefel HG
    Opt Express; 2013 Jun; 21(12):14169-80. PubMed ID: 23787608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface-Induced Near-Infrared Response of Gold-Silica Hybrid Nanoparticles Antennas.
    Rahman AU; Geng J; Rehman SU; Iqbal MJ; Jin R
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the refractive index with single plasmonic nanoantenna.
    Gurbatov S; Vitrik O; Kulchin Y; Kuchmizhak A
    Sci Rep; 2018 Mar; 8(1):3861. PubMed ID: 29497071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement.
    Lin D; Huang JS
    Opt Express; 2014 Apr; 22(7):7434-45. PubMed ID: 24718118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.