These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 24150557)
1. Hydrodynamic analysis of different thumb positions in swimming. Marinho DA; Rouboa AI; Alves FB; Vilas-Boas JP; Machado L; Reis VM; Silva AJ J Sports Sci Med; 2009; 8(1):58-66. PubMed ID: 24150557 [TBL] [Abstract][Full Text] [Related]
2. Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach. Vilas-Boas JP; Ramos RJ; Fernandes RJ; Silva AJ; Rouboa AI; Machado L; Barbosa TM; Marinho DA J Appl Biomech; 2015 Feb; 31(1):48-55. PubMed ID: 25222969 [TBL] [Abstract][Full Text] [Related]
3. Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: contributions to hydrodynamics. Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ Biomed Res Int; 2013; 2013():140487. PubMed ID: 23691493 [TBL] [Abstract][Full Text] [Related]
4. Swimming propulsion forces are enhanced by a small finger spread. Marinho DA; Barbosa TM; Reis VM; Kjendlie PL; Alves FB; Vilas-Boas JP; Machado L; Silva AJ; Rouboa AI J Appl Biomech; 2010 Feb; 26(1):87-92. PubMed ID: 20147761 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional CFD analysis of the hand and forearm in swimming. Marinho DA; Silva AJ; Reis VM; Barbosa TM; Vilas-Boas JP; Alves FB; Machado L; Rouboa AI J Appl Biomech; 2011 Feb; 27(1):74-80. PubMed ID: 21451185 [TBL] [Abstract][Full Text] [Related]
6. A computational fluid dynamics study of propulsion due to the orientation effects of swimmer's hand. Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ J Appl Biomech; 2013 Dec; 29(6):817-23. PubMed ID: 24482258 [TBL] [Abstract][Full Text] [Related]
7. Analysis of a swimmer's hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions. Samson M; Monnet T; Bernard A; Lacouture P; David L J Biomech; 2018 Jan; 67():157-165. PubMed ID: 29269003 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic drag and lift forces on human hand/arm models. Berger MA; de Groot G; Hollander AP J Biomech; 1995 Feb; 28(2):125-33. PubMed ID: 7896855 [TBL] [Abstract][Full Text] [Related]
9. Analysis of drafting effects in swimming using computational fluid dynamics. Silva AJ; Rouboa A; Moreira A; Reis VM; Alves F; Vilas-Boas JP; Marinho DA J Sports Sci Med; 2008; 7(1):60-6. PubMed ID: 24150135 [TBL] [Abstract][Full Text] [Related]
10. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. Rouboa A; Silva A; Leal L; Rocha J; Alves F J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis. Novais ML; Silva AJ; Mantha VR; Ramos RJ; Rouboa AI; Vilas-Boas JP; Luís SR; Marinho DA J Hum Kinet; 2012 Jun; 33():55-62. PubMed ID: 23487502 [TBL] [Abstract][Full Text] [Related]
12. Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics. Bixler B; Riewald S J Biomech; 2002 May; 35(5):713-7. PubMed ID: 11955512 [TBL] [Abstract][Full Text] [Related]
13. Flight of the honeybee. V. Drag and lift coefficients of the bee's body; implications for flight dynamics. Nachtigall W; Hanauer-Thieser U J Comp Physiol B; 1992; 162(3):267-77. PubMed ID: 1613166 [TBL] [Abstract][Full Text] [Related]
14. Hydrodynamic drag during gliding in swimming. Marinho DA; Reis VM; Alves FB; Vilas-Boas JP; Machado L; Silva AJ; Rouboa AI J Appl Biomech; 2009 Aug; 25(3):253-7. PubMed ID: 19827475 [TBL] [Abstract][Full Text] [Related]
15. Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions. Costa L; Mantha VR; Silva AJ; Fernandes RJ; Marinho DA; Vilas-Boas JP; Machado L; Rouboa A J Biomech; 2015 Jul; 48(10):2221-6. PubMed ID: 26087879 [TBL] [Abstract][Full Text] [Related]
16. The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer. Bixler B; Pease D; Fairhurst F Sports Biomech; 2007 Jan; 6(1):81-98. PubMed ID: 17542180 [TBL] [Abstract][Full Text] [Related]
17. The influence of the hand's acceleration and the relative contribution of drag and lift forces in front crawl swimming. Gourgoulis V; Boli A; Aggeloussis N; Antoniou P; Toubekis A; Mavromatis G J Sports Sci; 2015; 33(7):696-712. PubMed ID: 25429796 [TBL] [Abstract][Full Text] [Related]
18. Analysis of fluid force and flow fields during gliding in swimming using smoothed particle hydrodynamics method. Liu MM; Yu CW; Meng QH; Hao XF; Chen ZL; He M Front Bioeng Biotechnol; 2024; 12():1355617. PubMed ID: 38846802 [TBL] [Abstract][Full Text] [Related]
19. Steady hydrodynamic interaction between human swimmers. Yuan ZM; Li M; Ji CY; Li L; Jia L; Incecik A J R Soc Interface; 2019 Jan; 16(150):20180768. PubMed ID: 30958151 [TBL] [Abstract][Full Text] [Related]
20. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke. Takagi H; Nakashima M; Ozaki T; Matsuuchi K J Biomech; 2014 Apr; 47(6):1401-8. PubMed ID: 24524992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]