BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24150570)

  • 1. Changes in neural circuitry regulating response-reversal learning and Arc-mediated consolidation of learning in rats with methamphetamine-induced partial monoamine loss.
    Pastuzyn ED; Keefe KA
    Neuropsychopharmacology; 2014 Mar; 39(4):963-72. PubMed ID: 24150570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered learning and Arc-regulated consolidation of learning in striatum by methamphetamine-induced neurotoxicity.
    Pastuzyn ED; Chapman DE; Wilcox KS; Keefe KA
    Neuropsychopharmacology; 2012 Mar; 37(4):885-95. PubMed ID: 22071872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of methamphetamine neurotoxicity on learning-induced Arc mRNA expression in identified striatal efferent neurons.
    Daberkow DP; Riedy MD; Kesner RP; Keefe KA
    Neurotox Res; 2008 Dec; 14(4):307-15. PubMed ID: 19073434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of subcellular Arc/Arg 3.1 mRNA expression in striatal efferent neurons following partial monoamine loss induced by methamphetamine.
    Barker-Haliski ML; Oldenburger K; Keefe KA
    J Neurochem; 2012 Dec; 123(5):845-55. PubMed ID: 22978492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust increase in expression of arc gene, an effector immediate early gene, in the rat brain after acute and chronic methamphetamine administration.
    Kodama M; Akiyama K; Ujike H; Shimizu Y; Tanaka Y; Kuroda S
    Brain Res; 1998 Jun; 796(1-2):273-83. PubMed ID: 9689478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection.
    McCoy MT; Jayanthi S; Wulu JA; Beauvais G; Ladenheim B; Martin TA; Krasnova IN; Hodges AB; Cadet JL
    Psychopharmacology (Berl); 2011 May; 215(2):353-65. PubMed ID: 21229349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phasic-like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamine-induced partial dopamine denervation.
    Howard CD; Pastuzyn ED; Barker-Haliski ML; Garris PA; Keefe KA
    J Neurochem; 2013 May; 125(4):555-65. PubMed ID: 23480199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term changes in basal ganglia function after a neurotoxic regimen of methamphetamine.
    Chapman DE; Hanson GR; Kesner RP; Keefe KA
    J Pharmacol Exp Ther; 2001 Feb; 296(2):520-7. PubMed ID: 11160639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine.
    Stolyarova A; O'Dell SJ; Marshall JF; Izquierdo A
    Behav Brain Res; 2014 Sep; 271():195-202. PubMed ID: 24959862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired formation of stimulus-response, but not action-outcome, associations in rats with methamphetamine-induced neurotoxicity.
    Son JH; Latimer C; Keefe KA
    Neuropsychopharmacology; 2011 Nov; 36(12):2441-51. PubMed ID: 21775980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclooxygenase activity contributes to the monoaminergic damage caused by serial exposure to stress and methamphetamine.
    Northrop NA; Yamamoto BK
    Neuropharmacology; 2013 Sep; 72():96-105. PubMed ID: 23643743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral ammonia as a mediator of methamphetamine neurotoxicity.
    Halpin LE; Yamamoto BK
    J Neurosci; 2012 Sep; 32(38):13155-63. PubMed ID: 22993432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methamphetamine-induced stereotypy correlates negatively with patch-enhanced prodynorphin and arc mRNA expression in the rat caudate putamen: the role of mu opioid receptor activation.
    Horner KA; Noble ES; Gilbert YE
    Pharmacol Biochem Behav; 2010 Jun; 95(4):410-21. PubMed ID: 20298714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine.
    Izquierdo A; Belcher AM; Scott L; Cazares VA; Chen J; O'Dell SJ; Malvaez M; Wu T; Marshall JF
    Neuropsychopharmacology; 2010 Jan; 35(2):505-14. PubMed ID: 19794407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methamphetamine preconditioning: differential protective effects on monoaminergic systems in the rat brain.
    Cadet JL; Krasnova IN; Ladenheim B; Cai NS; McCoy MT; Atianjoh FE
    Neurotox Res; 2009 Apr; 15(3):252-9. PubMed ID: 19384598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion.
    Schwendt M; Rocha A; See RE; Pacchioni AM; McGinty JF; Kalivas PW
    J Pharmacol Exp Ther; 2009 Nov; 331(2):555-62. PubMed ID: 19648469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between methamphetamine-induced monoamine depletions in the striatum and sequential motor learning.
    Daberkow DP; Kesner RP; Keefe KA
    Pharmacol Biochem Behav; 2005 May; 81(1):198-204. PubMed ID: 15894079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of methamphetamine and SCH23390 on the expression of members of IEG families of transcription factors in the rat striatum.
    Beauvais G; Jayanthi S; McCoy MT; Ladenheim B; Cadet JL
    Brain Res; 2010 Mar; 1318():1-10. PubMed ID: 20059987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats.
    Broom SL; Yamamoto BK
    Psychopharmacology (Berl); 2005 Sep; 181(3):467-76. PubMed ID: 15986185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methamphetamine-induced changes in the object recognition memory circuit.
    Reichel CM; Ramsey LA; Schwendt M; McGinty JF; See RE
    Neuropharmacology; 2012 Feb; 62(2):1119-26. PubMed ID: 22115899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.