BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24150602)

  • 1. 3D printing of biomimetic microstructures for cancer cell migration.
    Huang TQ; Qu X; Liu J; Chen S
    Biomed Microdevices; 2014 Feb; 16(1):127-32. PubMed ID: 24150602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perlecan domain I gradients establish stable biomimetic heparin binding growth factor gradients for cell migration in hydrogels.
    Hubka KM; Carson DD; Harrington DA; Farach-Carson MC
    Acta Biomater; 2019 Oct; 97():385-398. PubMed ID: 31351252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printing enabled micro-assembly of a microfluidic electroporation system for 3D tissue engineering.
    Zhu Q; Hamilton M; Vasquez B; He M
    Lab Chip; 2019 Jul; 19(14):2362-2372. PubMed ID: 31214669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels.
    Heintz KA; Bregenzer ME; Mantle JL; Lee KH; West JL; Slater JH
    Adv Healthc Mater; 2016 Sep; 5(17):2153-60. PubMed ID: 27239785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro vascular chip using 3D printing-enabled hydrogel casting.
    Yang L; Shridhar SV; Gerwitz M; Soman P
    Biofabrication; 2016 Aug; 8(3):035015. PubMed ID: 27563030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Inspired Mechanotactic Hybrids for Orchestrating Traction-Mediated Epithelial Migration.
    Cai P; Layani M; Leow WR; Amini S; Liu Z; Qi D; Hu B; Wu YL; Miserez A; Magdassi S; Chen X
    Adv Mater; 2016 Apr; 28(16):3102-10. PubMed ID: 26913959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscale multilayer cocultures for biomimetic blood vessels.
    Tan W; Desai TA
    J Biomed Mater Res A; 2005 Feb; 72(2):146-60. PubMed ID: 15558555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures.
    Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T
    Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid 3D Extrusion of Synthetic Tumor Microenvironments.
    Grolman JM; Zhang D; Smith AM; Moore JS; Kilian KA
    Adv Mater; 2015 Oct; 27(37):5512-7. PubMed ID: 26283579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional photolithographic micropatterning: a novel tool to probe the complexities of cell migration.
    Hoffmann JC; West JL
    Integr Biol (Camb); 2013 May; 5(5):817-27. PubMed ID: 23460015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide.
    Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    Biomaterials; 2004 Feb; 25(5):895-906. PubMed ID: 14609678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Microfabricated Scaffolds and Microfluidic Devices for Ocular Surface Replacement: a Review.
    Prina E; Mistry P; Sidney LE; Yang J; Wildman RD; Bertolin M; Breda C; Ferrari B; Barbaro V; Hopkinson A; Dua HS; Ferrari S; Rose FRAJ
    Stem Cell Rev Rep; 2017 Jun; 13(3):430-441. PubMed ID: 28573367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinting of hydrogel-based biomimetic microenvironments.
    Luo Y; Wei X; Huang P
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1695-1705. PubMed ID: 30508322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.