These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24150883)

  • 21. Hydrodynamic filtration in microfluidic channels as size-selection process for giant unilamellar vesicles.
    Woo Y; Heo Y; Shin K; Yi GR
    J Biomed Nanotechnol; 2013 Apr; 9(4):610-4. PubMed ID: 23621019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations.
    Stein H; Spindler S; Bonakdar N; Wang C; Sandoghdar V
    Front Physiol; 2017; 8():63. PubMed ID: 28243205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis.
    Yandrapalli N; Seemann T; Robinson T
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32164221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry.
    Nishimura K; Matsuura T; Nishimura K; Sunami T; Suzuki H; Yomo T
    Langmuir; 2012 Jun; 28(22):8426-32. PubMed ID: 22578080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of lipid composition and diffusivity in OLA generated vesicles.
    Schaich M; Sobota D; Sleath H; Cama J; Keyser UF
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183359. PubMed ID: 32416194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of temperature on the formation of liquid phase-separating giant unilamellar vesicles (GUV).
    Betaneli V; Worch R; Schwille P
    Chem Phys Lipids; 2012 Sep; 165(6):630-7. PubMed ID: 22750641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.
    Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G
    Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of Hydrogel-Assisted Giant Unilamellar Vesicle Formation from Unsaturated Lipid Systems.
    Peruzzi J; Gutierrez MG; Mansfield K; Malmstadt N
    Langmuir; 2016 Dec; 32(48):12702-12709. PubMed ID: 27934517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles.
    Shuma ML; Moghal MMR; Yamazaki M
    Biochemistry; 2020 May; 59(18):1780-1790. PubMed ID: 32285663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clustering of Giant Unilamellar Vesicles Promoted by Covalent and Noncovalent Bonding of Functional Groups at Membrane-Embedded Peptides.
    Stuhr-Hansen N; Vagianou CD; Blixt O
    Bioconjug Chem; 2019 Aug; 30(8):2156-2164. PubMed ID: 31322865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets.
    Zhang Y; Obuchi H; Toyota T
    Membranes (Basel); 2023 Apr; 13(4):. PubMed ID: 37103867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method of gentle hydration to prepare oil-free giant unilamellar vesicles that can confine enzymatic reactions.
    Shohda K; Takahashi K; Suyama A
    Biochem Biophys Rep; 2015 Sep; 3():76-82. PubMed ID: 29124169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane permeability to water measured by microfluidic trapping of giant vesicles.
    Bhatia T; Robinson T; Dimova R
    Soft Matter; 2020 Aug; 16(31):7359-7369. PubMed ID: 32696791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic fabrication of asymmetric giant lipid vesicles.
    Hu PC; Li S; Malmstadt N
    ACS Appl Mater Interfaces; 2011 May; 3(5):1434-40. PubMed ID: 21449588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies.
    Rideau E; Wurm FR; Landfester K
    Adv Biosyst; 2019 Jun; 3(6):e1800324. PubMed ID: 32648708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trapping and release of giant unilamellar vesicles in microfluidic wells.
    Yamada A; Lee S; Bassereau P; Baroud CN
    Soft Matter; 2014 Aug; 10(32):5878-85. PubMed ID: 24930637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Giant unilamellar vesicle formation under physiologically relevant conditions.
    Pott T; Bouvrais H; Méléard P
    Chem Phys Lipids; 2008 Aug; 154(2):115-9. PubMed ID: 18405664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
    Islam MZ; Ariyama H; Alam JM; Yamazaki M
    Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.