These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24151089)

  • 1. A streamlined strategy for aglycone assembly and glycosylation.
    Partridge KM; Bader SJ; Buchan ZA; Taylor CE; Montgomery J
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13647-50. PubMed ID: 24151089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel Catalysis: Synergy between Method Development and Total Synthesis.
    Standley EA; Tasker SZ; Jensen KL; Jamison TF
    Acc Chem Res; 2015 May; 48(5):1503-14. PubMed ID: 25905431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon-Carbon Bond Formation via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Unactivated Secondary and Tertiary Alkyl Electrophiles.
    Chu CK; Liang Y; Fu GC
    J Am Chem Soc; 2016 May; 138(20):6404-7. PubMed ID: 27187869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of amphidinolide T1 via catalytic, stereoselective macrocyclization.
    Colby EA; O'Brien KC; Jamison TF
    J Am Chem Soc; 2004 Feb; 126(4):998-9. PubMed ID: 14746449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings.
    Jackson EP; Malik HA; Sormunen GJ; Baxter RD; Liu P; Wang H; Shareef AR; Montgomery J
    Acc Chem Res; 2015 Jun; 48(6):1736-45. PubMed ID: 25965694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic Multicomponent Synthesis of C-Acyl Glycosides by Consecutive Cross-Electrophile Couplings.
    Jiang Y; Yang K; Wei Y; Wang Q; Li SJ; Lan Y; Koh MJ
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211043. PubMed ID: 36165541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Venturing beyond Donor-Controlled Glycosylation: New Perspectives toward Anomeric Selectivity.
    Leng WL; Yao H; He JX; Liu XW
    Acc Chem Res; 2018 Mar; 51(3):628-639. PubMed ID: 29469568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile access to C-glycosyl amino acids and peptides via Ni-catalyzed reductive hydroglycosylation of alkynes.
    Liu YH; Xia YN; Gulzar T; Wei B; Li H; Zhu D; Hu Z; Xu P; Yu B
    Nat Commun; 2021 Aug; 12(1):4924. PubMed ID: 34389709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective nickel-catalyzed reductive coupling of alkynes and imines.
    Zhou CY; Zhu SF; Wang LX; Zhou QL
    J Am Chem Soc; 2010 Aug; 132(32):10955-7. PubMed ID: 20666442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters.
    Tollefson EJ; Hanna LE; Jarvo ER
    Acc Chem Res; 2015 Aug; 48(8):2344-53. PubMed ID: 26197033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expedient synthesis of chiral α-amino acids through nickel-catalyzed reductive cross-coupling.
    Lu X; Yi J; Zhang ZQ; Dai JJ; Liu JH; Xiao B; Fu Y; Liu L
    Chemistry; 2014 Nov; 20(47):15339-43. PubMed ID: 25314635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic implications of nickel-catalyzed reductive coupling of aldehydes and chiral 1,6-enynes.
    Moslin RM; Jamison TF
    Org Lett; 2006 Feb; 8(3):455-8. PubMed ID: 16435858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel-catalyzed three-component domino reactions of aryl Grignard reagents, alkynes, and aryl halides producing tetrasubstituted alkenes.
    Xue F; Zhao J; Hor TS; Hayashi T
    J Am Chem Soc; 2015 Mar; 137(9):3189-92. PubMed ID: 25714497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the selectivity between nickel-catalyzed 1,2-cis-2-amino glycosylation of hydroxyl groups of thioglycoside acceptors with C2-substituted benzylidene N-phenyl trifluoroacetimidates and intermolecular aglycon transfer of the sulfide group.
    Yu F; Nguyen HM
    J Org Chem; 2012 Sep; 77(17):7330-43. PubMed ID: 22838405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New N-heterocyclic carbene ligand and its application in asymmetric nickel-catalyzed aldehyde/alkyne reductive couplings.
    Chaulagain MR; Sormunen GJ; Montgomery J
    J Am Chem Soc; 2007 Aug; 129(31):9568-9. PubMed ID: 17628066
    [No Abstract]   [Full Text] [Related]  

  • 16. Nickel-catalyzed reductive coupling of alkynes and epoxides.
    Molinaro C; Jamison TF
    J Am Chem Soc; 2003 Jul; 125(27):8076-7. PubMed ID: 12837057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Enantioenriched Allylic Silanes via Nickel-Catalyzed Reductive Cross-Coupling.
    Hofstra JL; Cherney AH; Ordner CM; Reisman SE
    J Am Chem Soc; 2018 Jan; 140(1):139-142. PubMed ID: 29202243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general strategy for regiocontrol in nickel-catalyzed reductive couplings of aldehydes and alkynes.
    Malik HA; Sormunen GJ; Montgomery J
    J Am Chem Soc; 2010 May; 132(18):6304-5. PubMed ID: 20394367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrocyclization by nickel-catalyzed, ester-promoted, epoxide-alkyne reductive coupling: total synthesis of (-)-gloeosporone.
    Trenkle JD; Jamison TF
    Angew Chem Int Ed Engl; 2009; 48(29):5366-8. PubMed ID: 19536804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regioselectivity and enantioselectivity in nickel-catalysed reductive coupling reactions of alkynes.
    Moslin RM; Miller-Moslin K; Jamison TF
    Chem Commun (Camb); 2007 Nov; (43):4441-9. PubMed ID: 17971951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.