BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24151138)

  • 1. Simulation from a known Cox MSM using standard parametric models for the g-formula.
    Young JG; Tchetgen Tchetgen EJ
    Stat Med; 2014 Mar; 33(6):1001-14. PubMed ID: 24151138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the g-null Paradox.
    McGrath S; Young JG; Hernán MA
    Epidemiology; 2022 Jan; 33(1):114-120. PubMed ID: 34711734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Bias Analysis for a Misclassified Confounder: A Comparison Between Marginal Structural Models and Conditional Models for Point Treatments.
    Nab L; Groenwold RHH; van Smeden M; Keogh RH
    Epidemiology; 2020 Nov; 31(6):796-805. PubMed ID: 32826524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination.
    Lusivika-Nzinga C; Selinger-Leneman H; Grabar S; Costagliola D; Carrat F
    BMC Med Res Methodol; 2017 Dec; 17(1):160. PubMed ID: 29202691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating longitudinal data from marginal structural models using the additive hazard model.
    Keogh RH; Seaman SR; Gran JM; Vansteelandt S
    Biom J; 2021 Oct; 63(7):1526-1541. PubMed ID: 33983641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal plasmode algorithms to evaluate statistical methods in realistic scenarios: an illustration applied to occupational epidemiology.
    Souli Y; Trudel X; Diop A; Brisson C; Talbot D
    BMC Med Res Methodol; 2023 Oct; 23(1):242. PubMed ID: 37853309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model misspecification and bias for inverse probability weighting estimators of average causal effects.
    Waernbaum I; Pazzagli L
    Biom J; 2023 Feb; 65(2):e2100118. PubMed ID: 36045099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Model Specification When Using the Parametric G-Formula in the Presence of Censoring.
    Chiu YH; Wen L; McGrath S; Logan R; Dahabreh IJ; Hernán MA
    Am J Epidemiol; 2023 Nov; 192(11):1887-1895. PubMed ID: 37338985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of conventional and marginal structural Cox model estimators: a simulation study.
    Xiao Y; Abrahamowicz M; Moodie EE
    Int J Biostat; 2010; 6(2):Article 13. PubMed ID: 21969997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
    Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M
    Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference.
    Murray EJ; Robins JM; Seage GR; Freedberg KA; Hernán MA
    Am J Epidemiol; 2017 Jul; 186(2):131-142. PubMed ID: 28838064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural Cox model context.
    Karim ME; Platt RW;
    Stat Med; 2017 Jun; 36(13):2032-2047. PubMed ID: 28219110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation study of finite-sample properties of marginal structural Cox proportional hazards models.
    Westreich D; Cole SR; Schisterman EF; Platt RW
    Stat Med; 2012 Aug; 31(19):2098-109. PubMed ID: 22492660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect Estimation in Point-Exposure Studies with Binary Outcomes and High-Dimensional Covariate Data - A Comparison of Targeted Maximum Likelihood Estimation and Inverse Probability of Treatment Weighting.
    Pang M; Schuster T; Filion KB; Schnitzer ME; Eberg M; Platt RW
    Int J Biostat; 2016 Nov; 12(2):. PubMed ID: 27889705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.
    Zheng W; Petersen M; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):233-52. PubMed ID: 27227723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation-based evaluation of methods to estimate the impact of an adverse event on hospital length of stay.
    Samore MH; Shen S; Greene T; Stoddard G; Sauer B; Shinogle J; Nebeker J; Harbarth S
    Med Care; 2007 Oct; 45(10 Supl 2):S108-15. PubMed ID: 17909368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted learning in real-world comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Stat Med; 2014 Jun; 33(14):2480-520. PubMed ID: 24535915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.