These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24151206)

  • 41. Glutathione-responsive biodegradable poly(urea-urethane)s containing L-cystine-based chain extender.
    Wang J; Zheng Z; Chen L; Tu X; Wang X
    J Biomater Sci Polym Ed; 2013; 24(7):831-48. PubMed ID: 23594072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on in vitro biostability and blood compatibility of polyurethane potting compound based on aromatic polymeric MDI for extracorporeal devices.
    Hridya VK; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S195-202. PubMed ID: 18584119
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender.
    Han J; Cao RW; Chen B; Ye L; Zhang AY; Zhang J; Feng ZG
    J Biomed Mater Res A; 2011 Mar; 96(4):705-14. PubMed ID: 21284079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment.
    Saralegi A; Fernandes SC; Alonso-Varona A; Palomares T; Foster EJ; Weder C; Eceiza A; Corcuera MA
    Biomacromolecules; 2013 Dec; 14(12):4475-82. PubMed ID: 24187934
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization.
    Hojabri L; Kong X; Narine SS
    Biomacromolecules; 2009 Apr; 10(4):884-91. PubMed ID: 19281152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z; Zhang Z; Liu KL; Ni X; Li J
    Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biocompatible polyurethane-based hydrogel.
    Braatz JA
    J Biomater Appl; 1994 Jul; 9(1):71-96. PubMed ID: 7983587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polyurethanes containing zwitterionic sulfobetaines and their molecular chain rearrangement in water.
    Cao J; Yang M; Lu A; Zhai S; Chen Y; Luo X
    J Biomed Mater Res A; 2013 Mar; 101(3):909-18. PubMed ID: 23255492
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and characterization of biodegradable polyurethane for hypopharyngeal tissue engineering.
    Shen Z; Lu D; Li Q; Zhang Z; Zhu Y
    Biomed Res Int; 2015; 2015():871202. PubMed ID: 25839041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocomposites.
    Rueda L; Garcia I; Palomares T; Alonso-Varona A; Mondragon I; Corcuera M; Eceiza A
    J Biomed Mater Res A; 2011 Jun; 97(4):480-9. PubMed ID: 21495170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications.
    Wang DA; Feng LX; Ji J; Sun YH; Zheng XX; Elisseeff JH
    J Biomed Mater Res A; 2003 Jun; 65(4):498-510. PubMed ID: 12761841
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel poly(urethane-aminoamides): an in vitro study of the interaction with heparin.
    Petrini P; Tanzi MC; Visai L; Casolini F; Speziale P
    J Biomater Sci Polym Ed; 2000; 11(4):353-65. PubMed ID: 10903035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro biocompatibility evaluation of a heparinizable material (PUPA), based on polyurethane and poly(amido-amine) components.
    Albanese A; Barbucci R; Belleville J; Bowry S; Eloy R; Lemke HD; Sabatini L
    Biomaterials; 1994 Jan; 15(2):129-36. PubMed ID: 8011859
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro.
    Szelest-Lewandowska A; Masiulanis B; Szymonowicz M; Pielka S; Paluch D
    J Biomed Mater Res A; 2007 Aug; 82(2):509-20. PubMed ID: 17530635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular interactions with biodegradable polyurethanes formulated from L-tyrosine.
    Shah PN; Yun YH
    J Biomater Appl; 2013 May; 27(8):1017-31. PubMed ID: 22207610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyurethane networks from fatty-acid-based aromatic triols: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cadiz V
    Biomacromolecules; 2007 Jun; 8(6):1858-64. PubMed ID: 17472338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HUVEC biocompatibility and platelet activation of segmented polyurethanes prepared with either glutathione or its amino acids as chain extenders.
    Perales-Alcacio JL; Santa-Olalla Tapia J; Mojica-Cardoso C; Vargas-Coronado RF; Chan-Chan LH; Headen DM; García AJ; Cervantes-Uc JM; Cauich-Rodríguez JV
    J Biomater Sci Polym Ed; 2013; 24(14):1601-17. PubMed ID: 23544871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.