These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 24151302)
1. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. Rejón JD; Delalande F; Schaeffer-Reiss C; Carapito C; Zienkiewicz K; de Dios Alché J; Rodríguez-García MI; Van Dorsselaer A; Castro AJ J Exp Bot; 2013 Dec; 64(18):5695-705. PubMed ID: 24151302 [TBL] [Abstract][Full Text] [Related]
2. The plant stigma exudate: a biochemically active extracellular environment for pollen germination? Rejón JD; Delalande F; Schaeffer-Reiss C; Carapito C; Zienkiewicz K; de Dios Alché J; Isabel Rodríguez-García M; Van Dorsselaer A; Castro AJ Plant Signal Behav; 2014; 9(4):e28274. PubMed ID: 24589550 [TBL] [Abstract][Full Text] [Related]
3. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue. Busot GY; McClure B; Ibarra-Sánchez CP; Jiménez-Durán K; Vázquez-Santana S; Cruz-García F J Exp Bot; 2008; 59(11):3187-201. PubMed ID: 18689443 [TBL] [Abstract][Full Text] [Related]
4. Cellular localization and levels of pectins and arabinogalactan proteins in olive (Olea europaea L.) pistil tissues during development: implications for pollen-pistil interaction. Suárez C; Zienkiewicz A; Castro AJ; Zienkiewicz K; Majewska-Sawka A; Rodríguez-García MI Planta; 2013 Jan; 237(1):305-19. PubMed ID: 23065053 [TBL] [Abstract][Full Text] [Related]
5. Pollen tube growth and guidance: roles of small, secreted proteins. Chae K; Lord EM Ann Bot; 2011 Sep; 108(4):627-36. PubMed ID: 21307038 [TBL] [Abstract][Full Text] [Related]
6. Exogenous free ubiquitin enhances lily pollen tube adhesion to an in vitro stylar matrix and may facilitate endocytosis of SCA. Kim ST; Zhang K; Dong J; Lord EM Plant Physiol; 2006 Dec; 142(4):1397-411. PubMed ID: 16998086 [TBL] [Abstract][Full Text] [Related]
7. Pollen-specific SKP1-like proteins are components of functional scf complexes and essential for lily pollen tube elongation. Chang LC; Guo CL; Lin YS; Fu H; Wang CS; Jauh GY Plant Cell Physiol; 2009 Aug; 50(8):1558-72. PubMed ID: 19578169 [TBL] [Abstract][Full Text] [Related]
8. Daylily protein constituents of the pollen and stigma a proteomics approach. Tremblay RR; Bourassa S; Nehmé B; Calvo EL J Plant Physiol; 2017 May; 212():1-12. PubMed ID: 28242413 [TBL] [Abstract][Full Text] [Related]
9. Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. Losada JM; Herrero M Ann Bot; 2012 Aug; 110(3):573-84. PubMed ID: 22652420 [TBL] [Abstract][Full Text] [Related]
10. The Nutritional Role of Pistil Exudate in Pollen Tube Wall Formation in Lilium longiflorum: II. Production and Utilization of Exudate from Stigma and Stylar Canal. Labarca C; Loewus F Plant Physiol; 1973 Aug; 52(2):87-92. PubMed ID: 16658527 [TBL] [Abstract][Full Text] [Related]
11. What are the key mechanisms that alter the morphology of stigmatic papillae in Katano K; Suzuki N Plant Signal Behav; 2021 Dec; 16(12):1980999. PubMed ID: 34549683 [TBL] [Abstract][Full Text] [Related]
12. KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis. Riglet L; Rozier F; Kodera C; Bovio S; Sechet J; Fobis-Loisy I; Gaude T Elife; 2020 Sep; 9():. PubMed ID: 32867920 [TBL] [Abstract][Full Text] [Related]
13. The Nutritional Role of Pistil Exudate in Pollen Tube Wall Formation in Lilium longiflorum: I. Utilization of Injected Stigmatic Exudate. Labarca C; Loewus F Plant Physiol; 1972 Jul; 50(1):7-14. PubMed ID: 16658136 [TBL] [Abstract][Full Text] [Related]
14. In vivo cross-linking combined with mass spectrometry analysis reveals receptor-like kinases and Ca(2+) signalling proteins as putative interaction partners of pollen plasma membrane H(+) ATPases. Pertl-Obermeyer H; Schulze WX; Obermeyer G J Proteomics; 2014 Aug; 108():17-29. PubMed ID: 24824344 [TBL] [Abstract][Full Text] [Related]
15. Programmed-cell-death hallmarks in incompatible pollen and papillar stigma cells of Olea europaea L. under free pollination. Serrano I; Pelliccione S; Olmedilla A Plant Cell Rep; 2010 Jun; 29(6):561-72. PubMed ID: 20352230 [TBL] [Abstract][Full Text] [Related]
16. Plant Hormone and Fatty Acid Screening of Breygina M; Kochkin D; Voronkov A; Ivanova T; Babushkina K; Klimenko E Biomolecules; 2023 Aug; 13(9):. PubMed ID: 37759713 [TBL] [Abstract][Full Text] [Related]
17. The Plant Ovule Secretome: A Different View toward Pollen-Pistil Interactions. Liu Y; Joly V; Dorion S; Rivoal J; Matton DP J Proteome Res; 2015 Nov; 14(11):4763-75. PubMed ID: 26387803 [TBL] [Abstract][Full Text] [Related]
18. Identification and exploration of pollen tube small proteins encoded by pollination-induced transcripts. Huang JC; Chang LC; Wang ML; Guo CL; Chung MC; Jauh GY Plant Cell Physiol; 2011 Sep; 52(9):1546-59. PubMed ID: 21771867 [TBL] [Abstract][Full Text] [Related]
19. [The ultracytochemical localization of ATPase activity in pollen tube and stigma of Fagopyrum esculentum after compatible and incompatible pollination]. Gao XQ; Wang XL Shi Yan Sheng Wu Xue Bao; 2002 Mar; 35(1):47-53. PubMed ID: 15344317 [TBL] [Abstract][Full Text] [Related]
20. The effect of cycloheximide and 6-methylpurine on in vivo compatible and incompatible pollen tube growth in Lilium longiflorum. Ascher PD; Drewlow LW Theor Appl Genet; 1970 Jan; 40(4):173-5. PubMed ID: 24435753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]